A SEQUENCE OF POLYNOMIALS FOR APPROXIMATING ARCTANGENT

HERBERT A. MEDINA

1. Introduction

The Taylor series
\[
\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}
\]
was discovered by the Scotsman James Gregory in 1671 ([B, Ch. 12]). The series converges uniformly to \(\arctan x \) on \([-1, 1]\); thus, we get \(\{T_n(x)\} = \left\{ \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} x^{2k+1} \right\} \), the sequence of Taylor polynomials centered at 0 that converges to \(\arctan x \) on \([-1, 1]\).

Like the Taylor polynomials for several other classical functions, e.g., \(\cos x \), \(\sin x \), and \(e^x \), this sequence of polynomials is very easy to describe and work with; but unlike those Taylor sequences with factorials in the denominators of their coefficients, it does not converge rapidly for all “important” values of \(x \). In particular, it converges extremely slowly to \(\arctan x \) when \(|x| \) is near 1. For example, if \(x = 0.95 \), we need to use \(T_{28} \), a polynomial of degree 57, to get three decimal places of accuracy for \(\arctan(0.95) \); if \(x = 1 \), we need to use \(T_{500} \), a polynomial of degree 1001, to get three decimal places for \(\arctan 1 \). Indeed, for \(x \in [0, 1] \), it is easy to show that \(| \arctan x - T_n(x) | \geq \frac{1}{2(2n+3)} \); thus, as \(x \to 1 \), \(T_n(x) \) cannot approximate \(\arctan x \) any better than \(\frac{1}{2(\text{degree } T_n)+4} \). The same is true near \(-1\). It is only fair to note that \(\{T_n\} \) converges to \(\arctan x \) reasonably fast for \(x \) near 0.

In this note we present another elementary, easily-described sequence in \(\mathbb{Q}[x] \) that approximates \(\arctan x \) uniformly on \([0, 1]\) and which does so much more rapidly than the sequence \(\{T_n\} \). Such an approximating sequence provides, via the identities \(\arctan x = -\arctan(-x) = \frac{x}{2} - \arctan\left(\frac{x}{2}\right) \), a method of approximating \(\arctan x \) for all \(x \in \mathbb{R} \). The approximating sequence arises from the family of rational functions \(\left\{ \frac{x^{4m}(1-x)^{4m}}{1+x^2} \right\}_{m \in \mathbb{N}} \).

2. The sequence and its rate of convergence

We begin with an algebraic computation whose proof is easy via induction.
Lemma 1. Define \(p_1(x) = 4 - 4x^2 + 5x^4 - 4x^5 + x^6 \) and \(p_m(x) = x^4(1 - x)^4p_{m-1}(x) + (-4)^{m-1}p_1(x) \) for \(m \geq 2 \). Then
\[
\frac{x^{4m}(1 - x)^{4m}}{1 + x^2} = p_m(x) + \frac{(-4)^m}{1 + x^2}, \text{ for all } m \in \mathbb{N}.
\]

A calculus computation shows that \(x(1 - x) \leq \frac{1}{4} \) on \([0, 1]\). Thus, \(\frac{x^{4m}(1 - x)^{4m}}{1 + x^2} \leq \left(\frac{1}{4}\right)^{4m} \) on \([0, 1]\), and
\[
\int_0^x \frac{t^{4m}(1 - t)^{4m}}{1 + t^2} \, dt \leq \left(\frac{1}{4}\right)^{4m} x \leq \left(\frac{1}{4}\right)^{4m}, \forall x \in [0, 1].
\]

The result of the lemma can be rewritten as \(\frac{x^{4m}(1 - x)^{4m}}{1 + x^2} = p_m(x) - \frac{(-1)^{m+1}4^m}{1 + x^2} \). Thus,
\[
\left| \int_0^x p_m(t) \, dt - \arctan x \right| \leq \left(\frac{1}{4}\right)^{4m}.
\]

Dividing by \((-1)^{m+1}4^m\) and integrating the second term on the left we get
\[
\left| \int_0^x \frac{(-1)^{m+1}4^m}{4^m} p_m(t) \, dt - \arctan x \right| \leq \left(\frac{1}{4}\right)^{5m}.
\]

So
\[
h_m(x) = \int_0^x \frac{(-1)^{m+1}4^m}{4^m} p_m(t) \, dt
\]
defines a sequence in \(\mathbb{Q}[x] \) which converges uniformly on \([0, 1]\) to \(\arctan x \). To get a better sense of the convergence rate, note that \(p_m \) has degree \(8m - 2 \) and hence \(h_m \) has degree \(8m - 1 \). In (1) we write \(4^{5m} = (4^{5/8})^{8m-1+1} \) and summarize our results in Theorem 1.

Theorem 1. For \(m \in \mathbb{N} \), define \(p_m(t) \) as in Lemma 1 and \(h_m(x) \) as in (2). Then
\[
\left| h_m(x) - \arctan x \right| \leq \left(\frac{1}{4^{5/8}}\right)^{\text{degree } h_{m+1}} \text{ for all } x \in [0, 1].
\]

3. Examples, Observations and a Closed-Form Formula

Evaluating \(h_2(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{5x^9}{48} + \frac{x^{10}}{20} - \frac{43x^{11}}{176} + \frac{x^{12}}{4} - \frac{27x^{13}}{208} + \frac{x^{14}}{28} - \frac{3x^{15}}{768} \) at \(x = 0.95 \) and \(x = 1 \) we find that at both points, the approximation to \(\arctan x \) is within \(2.28 \times 10^{-7} \), better than six decimal places of accuracy with a polynomial of much smaller degree than the Taylor polynomials mentioned in the Introduction. If we consider \(h_7 \), a polynomial of degree 55, (3) guarantees that the approximation on \([0, 1]\) is accurate to within \(8.47 \times 10^{-22} \).

Thus, \(4h_7(1) = \frac{506119433541006422355449}{161162819285868563200} \) gives 20 digits of accuracy for \(\pi \).

Like the Taylor polynomials, the \(h_m \) are one-sided approximations. Indeed, it is not hard to see that \(h_m(x) - \arctan x \) is positive when \(m \) is odd and negative when \(m \) is even.

Taylor polynomials are constructed by matching the function and its derivatives at a point. Hermite Interpolating (or osculating) polynomials are constructed by matching
Theorem 2. For any $m \geq 1$, $h_m^{(n)}(0) = \arctan^{(n)}(0)$ and $h_m^{(n)}(1) = \arctan^{(n)}(1)$ for $1 \leq n \leq 4m$. Moreover, if $g(x)$ is a polynomial of degree $8m$ such that $g(0) = \arctan 0$, $g^{(n)}(0) = \arctan^{(n)}(0)$ and $g^{(n)}(1) = \arctan^{(n)}(1)$ for $1 \leq n \leq 4m$, then $g = h_m$.

Proof. We deal with the $x = 1$ case first. Use (2) and Lemma 1 to note that
\[
\frac{h'_m(x)}{4m} = \frac{(-1)^{m+1}}{4m} p_m(x) = \frac{(-1)^{m+1}}{4m} \left(\frac{x^{4m}(1 - x)^{4m}}{1 + x^2} - \frac{(-4)^m}{1 + x^2} \right)
\]
\[
= \left(\frac{(-1)^{m+1}}{4m} \frac{x^{4m}}{1 + x^2} \right) (1 - x)^{4m} + \frac{1}{1 + x^2}.
\]

(4)

Using $\arctan' x = \frac{1}{1+x^2}$ on the second term and the product rule for differentiation,
\[
\left(f(x)g(x) \right)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) g^{(k)}(x),
\]
on the first, we get
\[
h_m^{(n)}(x) = \sum_{k=0}^{n-1} \binom{n-1}{k} \left(\frac{(-1)^{m+1}}{4m} \frac{x^{4m}}{1 + x^2} \right)^{(n-1-k)} (1 - x)^{4m}^k + \arctan^{(n)}(x).
\]

For $0 \leq k \leq n - 1$, $\left. (1 - x)^{4m}^k \right|_{x=1} = 0$; thus, $h_m^{(n)}(1) = \arctan^{(n)}(1)$ for $1 \leq n \leq 4m$.

To prove the assertion at $x = 0$, we can rewrite the first summand in (4) as
\[
\left(\frac{(-1)^{m+1}}{4m} (1 - x)^{4m} \right) x^{4m},
\]
and follow the same steps used above.

If g is a polynomial with the properties stated, then $g - h_m$ is of degree $8m$, and because $g^{(n)}(0) - h_m^{(n)}(0) = 0$ for $0 \leq n \leq 4m$, its first $4m$ coefficients are 0. Hence $g - h_m = x^{4m+1}q$ where q is of degree $4m - 1$. Write $q(x) = \sum_{k=0}^{4m-1} a_k (x-1)^k$. Inductive use of the product rule to compute $(g - h_m)^{(k)}(1)$ shows that $a_k = C_k a_0$ for $1 \leq k \leq 4m - 1$ where $C_k \neq 0$; therefore its use on $(g - h_m)^{(4m)}(1)$ shows $(g - h_m)^{(4m)}(1) = C a_0$ where $C \neq 0$. Thus $a_0 = 0$ and $a_k = 0$ for $1 \leq k \leq 4m - 1$. \hfill \Box

The next lemma is the key in establishing formulas for the coefficients.

Lemma 2. For $m \in \mathbb{N}$, write $\frac{(1 - t)^{4m}}{1 + t^2} = \sum_{j=0}^{4m-2} a_j t^j + \frac{r_m(t)}{1 + t^2}$, where r_m is a polynomial with $\deg(r_m) < 2$. We have
Proof. Write
\[
\frac{(1 - t)^{4m}}{1 + t^2} = \sum_{k=0}^{4m} \binom{4m}{k} (-1)^k t^k
\]
\[
= \sum_{k=0}^{2m} \binom{4m}{2k} t^{2k} + \sum_{k=1}^{2m-1} \frac{4m}{2k+1} t^{2k+1}
\]
\[
SE - SO.
\]
Using \[
\frac{t^{2k}}{1 + t^2} = (-1)^{k+1} \sum_{j=1}^{k} (-1)^j t^{2(j-1)} + \frac{(-1)^k}{1 + t^2}, \text{ for } k \geq 1,
\]
we write
\[
SE = \frac{1}{1 + t^2} + \sum_{k=1}^{2m} \binom{4m}{2k} \left((-1)^{k+1} \sum_{j=1}^{k} (-1)^j t^{2(j-1)} + \frac{(-1)^k}{1 + t^2} \right).
\]
We collect the polynomial and non-polynomial parts
\[
SE = \sum_{k=1}^{2m} \binom{4m}{2k} \left((-1)^{k+1} \sum_{j=1}^{k} (-1)^j t^{2(j-1)} \right) + \sum_{k=0}^{2m} \binom{4m}{2k} \frac{(-1)^k}{1 + t^2}.
\]
Because \[
\sum_{k=0}^{2m} \binom{4m}{2k} (-1)^k = (-1)^m 4^m,
\]
the non-polynomial part becomes \[
\frac{(-1)^m 4^m}{1 + t^2}.
\]
We change the order of summation on the polynomial part to get
\[
\sum_{j=1}^{2m} \left((-1)^j \sum_{k=j}^{2m} \binom{4m}{2k} (-1)^k \right) t^{2(j-1)}.
\]
A similar procedure as that done on \(SE\) shows that
\[
SO = \sum_{j=1}^{2m-1} \left((-1)^j \sum_{k=j}^{2m-1} \binom{4m}{2k+1} (-1)^k \right) t^{2j-1} + \frac{t}{1 + t^2} \sum_{k=0}^{2m-1} \frac{4m}{2k+1} (-1)^k.
\]
Because the second summand is zero, we have established that
\[
\frac{(1 - t)^{4m}}{1 + t^2} = \sum_{j=1}^{2m} \left((-1)^j \sum_{k=j}^{2m} \binom{4m}{2k} (-1)^k \right) t^{2(j-1)} + \frac{(-1)^m 4^m}{1 + t^2}
\]
\[
+ \sum_{j=1}^{2m-1} \left((-1)^j \sum_{k=j}^{2m-1} \binom{4m}{2k+1} (-1)^k \right) t^{2j-1}.
\]
The equality proves both parts of the lemma. □
Combining the results of Lemmas 1 and 2, we see that

\[p_m(t) = (-1)^m 4^m \sum_{j=1}^{2m} (-1)^j t^{2(j-1)} + \sum_{j=0}^{4m-2} a_j t^{4m+j}, \]

(5)

where the \(a_j \) are as in Lemma 2. The closed form formula for \(h_m \) follows from (5) and (2).

Theorem 3. For \(m \geq 1 \),

\[h_m(x) = \sum_{j=1}^{2m} \frac{(-1)^{j+1}}{2j-1} x^{2j-1} + \sum_{j=0}^{4m-2} \frac{a_j}{-1)^{m+1} 4^m (4m + j + 1)} x^{4m+j+1}, \]

where \(a_{2i} = (-1)^i+1 \sum_{k=i+1}^{2m} \left(\frac{4m}{2k} \right) (-1)^k \) and \(a_{2i-1} = (-1)^{i+1} \sum_{k=i}^{2m-1} \left(\frac{4m}{2k+1} \right) (-1)^k \).

The theorem makes it easy to use a computer for the computation of the \(h_m \). The author’s website, http://myweb.lmu.edu/hmedina, contains Mathematica code for this computation and more details related to this note.

4. Further Remarks and Questions

The keys to the approximating sequence \(\{h_m\} \) are that the family of polynomials \(x^{4m} (1 - x)^{4m}, \ m \in \mathbb{N} \) leaves an integer remainder when divided by \(1 + x^2 \) and that the members of the family are small for \(x \in [0, 1] \). There are other families of polynomials with this property; is there another simple one that gives a faster approximation to \(\arctan x \)? Is there one with the desirable factorials in the denominator of the error bound?

The results herein were stumbled upon after the author became intrigued by and curious about \(\int_0^1 \frac{x^4 (1-x)^4}{1+x^2} \, dx = \frac{22}{7} - \pi \); that is, \(4(h_1(1) - \arctan 1) = \frac{22}{7} - \pi \). Is there a simple closed-form formula for \(4h_1(1) \)? If so, it would provide a sequence in \(\mathbb{Q} \) for approximating \(\pi \). Another, probably-very-difficult, problem is to find an easily-describable sequence \(\{g_n\} \) such that \(4g_n(1) \) is always a convergent in the continued fraction expansion of \(\pi \).

References

Department of Mathematics, Loyola Marymount University, Los Angeles, CA 90045

E-mail address: hmedina@lmu.edu