Problem Solving Algorithm
In general, solving a physics problem (and to a certain degree, the exercises
as well) involves taking a realistic situation and constructing a simplified
model that captures its essence. Often the complicated details of a problem
are deliberately suppressed so it can be solved with simple physics principles.
Creating a model that is sufficient to describe the essence of a problem
without being overly complex is not an easy task. Doing this will
require practice.
The good news is that
the skills you refine here solving physics problems will be applicable
to other courses and other facets of life. In problems the situation described
may appear new to you; it may appear that you have never seen a similar
problem. This is what happens in life each day brings something new you’ve
never encountered before.
The algorithm presented
here is meant to make your job easier. Think of this the basic scaffolding
that will allow you to build various masterpieces. At first this algorithm
might feel awkward, but trust me it will be beneficial in the long run.
(The same is true of other skills the proper grip on a tennis backhand
may at first feel uncomfortable, but you use an incorrect grip your game
will be limited.) Studies have shown that experienced problem solvers
(unlike novices) usually solve problems using a framework that is independent
of the problem or person.
The approach is
based on constructing a model of the situation described though three
different representations of the problem pictorial, conceptual and
mathematical. In this way you can tap into three different parts
of the brain. A fourth component, evaluating the answer or model, is also
present. The model you build (not the number you get at the end of some
algebra) is the “answer.” With this view, algebraic mistakes
are not as significant as conceptual mistakes (making incorrect assumptions
for example). Essentially you are trying to predict the system’s
behavior with your model this is what it means to do science.
A fifth component
to the process is taking a sufficient amount of time to understand the
problem. This often means rereading the problem several times, as well
as taking some time to visualize the situation in your mind’s eye.
The better one understands the problem, the better chance they have of
building the correct model.
It’s okay,
if not beneficial to make mistakes within a solution. Everybody does it.
Just like solving a puzzle, nobody puts the pieces down in the final position
until after trying them in several other places first. Expert problem
solvers rarely solve a problem in the linear, always perfect way textbooks
present example solutions. You shouldn’t feel as though you’re
doing anything wrong if you take a few wrong turns. Recognizing why they
are wrong turns can be quite educational.
Problem Solving Algorithm
 Pictorial Representation
Draw
a picture that shows the essence of the situation. It does not need
to be a work of art. People can be stick figures, cars can be squares;
you’re just trying to get a feel for the problem here. Be sure
to indicate your coordinate system. Is up the positive direction?
Which way does the xaxis point? Etc.
Also, this is a good place
to list known values & define variables. Choose a naming convention
that is easy to remember and understand. For example, using subscripts
can help to make sense of a large number of variables.
 Conceptual or Verbal Representation
The
main point of this representation is to describe the situation (&
model) in words. You should be as complete as possible describing
the situation as well as the relevant physics concepts. Here are a
few more details:
* Identify the system. Are you looking for the force of the table
on the book or the book on the table?
* Indicate the fundamental physics principle or concept. Write a sentence
that describes the basic concept at play “Here we see the conservation
of momentum in a twobody collision.” By identifying the principle
early in the solution you can help yourself stay on track.
* Identify any assumptions or simplifications. For example, are you
going to ignore air resistance? Making simplification can make an
apparently complicated problem much easier. Just be careful that you
retain the essence of the problem and don’t oversimplify.
* Hypothesize what will be the solution or outcome. Often you will
be asked to predict the outcome “will the car stay on the road
as it takes the corner?” By stating in words what you think
will happen (by using your intuition) you might be able to catch a
mathematical error later in the model. (“Given that the fact
that the car isn’t travelling very fast, I believe that it will
stay on the road.”)
 Mathematical Representation
Here
is where you will set up and solve various equations that model your
situation. Notice that this is only one part of a complete solution
or model. Without the pictures and words the equations are meaningless.
Never forget that the equations are merely one representation of the
system.
When you write down the
equations make sure you begin with the fundamental principle you identified
before. ("Conservation of momentum implies that P_{i}=
P_{f}"). We want to let the physics guide our math. Then
solve the equations symbolically for any unknown variables. This is
the step where you will be using your algebraic skills to rearrange
the equations to get something useful. You should also explain what
you are doing as you carry out each step "using equation #2,
substitute P_{i} into equation #3")
Finally, plug in known
values and calculate a numerical answer (if needed). Wait until
the final step to plug in the numbers. A solution is much easier
to follow if you use variables throughout the solution.
 Evaluation
This
is not really another representation, rather this section is where
you make sure that your model and numerical results match your reallife
experience. You should check the answer to any numerical calculation
does the answer have the correct units, sign, direction, etc.?
Make sure that you answer the
questions asked (if the question asks if a cheetah can catch a gazelle,
the answer is “yes” or “no”, not 5.6 m/s)
And finally, you should ask: Does the answer make sense? Is the answer
reasonable? How does it compare to your hypothesis? This is where
you try to reconcile your intuition with your mathematics. If they
differ, it would be worth reviewing your model. Often even the “best”
problem solvers will get to this step and find that their model and
results do not match their reallife experience. For example, cars
cannot travel 3 x 10^{8} m/s. If your equations produce this
result, you should go back and reexamine your model. When you perform
this step, you will largely be having a conversation with yourself.
Document this “conversation on your final paper; in other words,
write down your reasoning for believing that your model is reasonable.
While
expert problem solvers usually go through the algorithm in roughly the
order I have given, you may find that as you construct your model, you
will jump back and forth between various parts to add things you have
forgotten. This is normal and appropriate. Also, this algorithm has been
written to be as complete as possible, you will certainly encounter problems
where various steps aren’t as applicable.
I should point our that our text also
gives some good advice on solving problems. There is page 47, which emphasizes
the idea of breaking down complicated problems and situations to simpler
parts. Essentially this is learning how to see the trees in the forest.
Problems are often very intimidating at first glance, so a good first
step can to be looking for “subproblems” that are easier
to handle and bring you closer to understanding the original problem.
On final note about the models
your turn in neatness counts. Any paper that is full of scratch work,
will loose points. Think of the process of writing a paper you first
make notes for yourself, then work on a rough draft or two. What you hand
in is a wellorganized, easy to read paper. The models and solutions which
you hand in in this class should be thought of as final drafts. You are
bound to need to perform some scratch work and make revisions, these are
your rough drafts which you should keep. You don’t need to write
up your models on a computer (you can, but it is difficult to do), just
make sure that it organized, and easy to read.
