Assignment #4 solutions
Physics 253 (Mureika)

1. If his take-off velocity is \vec{v}_i at an angle θ, then the x- and y-components are $v_{xi} = v_i \cos \theta$ and $v_{yi} = v_i \sin \theta$. We know that the total vertical displacement is $\Delta x = 8.95 \text{ m}$, so $\Delta x = v_{xi}t$, where t is the total time he is in the air. Since projectile motion is symmetric about the highest point of the trajectory, then we can say the time required to go up (t_{up}) is equal to half of the entire time. We can calculate t_{up} using the equation

\[
v_{yf} - v_{yi} = gt_{up}
\]

\[
0 - v_{yi} = gt_{up}
\]

\[
t_{up} = \frac{-v_{yi}}{g}
\]

So, $t = 2t_{up}$, and we can re-insert this into the equation for the x-displacement:

\[
\Delta x = v_{xi} - \frac{2v_{yi}}{g}
\]

\[
\Delta x = \frac{-2v_{xi}v_{yi}}{g}
\]

\[
\Delta x = \frac{-2v_i^2 \sin \theta \cos \theta}{g}
\]

where we have substituted the component equations from before. Rearranging this to solve for v_i (the magnitude of the take-off velocity), we find

\[
v_i = \sqrt{-\frac{g\Delta x}{2 \sin \theta \cos \theta}} = \sqrt{-\frac{(-9.8)(8.95)}{2 \sin(20) \cos(20)}}
\]

\[
v_i = 11.68 \text{ m/s}
\]

So, his take-off velocity vector was $\vec{v} = 11.68 \text{ m/s at } 20^\circ$, or in component form

\[
\vec{v} = [10.98 \hat{x} + 4.00 \hat{y}] \text{ m/s}
\]

(b) The maximum height he rose off the ground is

\[
\Delta y = \frac{v_{yi}^2}{2g} = \frac{0-(3.99)^2}{2(-9.8)} = 0.81 \text{ m}
\]
The child running west will have a displacement \(d_1 = \frac{1}{2}a_1t^2 = (0.5)(0.75)(4)^2 = 6.0 \text{ m} \). The child running north-east will have a total displacement of \(d_2 = \frac{1}{2}a_2t^2 = (0.5)(1.25)(4)^2 = 10.0 \text{ m} \). We wish to find the length of the line \(d_t \), which is the distance between them. We note that the total displacement between them in the \(x \)-direction is simply \(d_1 + d_{2x} \), where \(d_{2x} \) is the \(x \)-component of the displacement of child 2. The total \(y \)-displacement between them is \(d_{2y} \). Since \(d_{2x} = d_2 \cos(45) = 7.1 \text{ m} \), and \(d_{2y} = d_2 \cos(45) = 7.1 \text{ m} \), the total components of their displacement are \(d_{tx} = d_1 + d_{2x} = 13.1 \text{ m} \), and \(d_{ty} = d_{2y} = 7.1 \text{ m} \). So, the total displacement is
\[
|d_t| = \sqrt{d_{tx}^2 + d_{ty}^2} = \sqrt{(13.1)^2 + (7.1)^2} = 14.9 \text{ m}.
\]
Alternatively, we could use the vector form of the kinematic equations. Child 2 is accelerating both in the \(x \)- and \(y \)-directions, with acceleration components \(a_{2x} = a_2 \cos(45) = 0.88 \text{ m/s}^2 \), and \(a_{2y} = a_2 \sin(45) = 0.88 \text{ m/s}^2 \). So, the child’s displacement vector components are \(d_{2x} = \frac{1}{2}a_{2x}t^2 = 7.1 \text{ m} \), and \(d_{2y} = \frac{1}{2}a_{2y}t^2 = 7.1 \text{ m} \).

3. The ball has a total horizontal displacement of 15 ft, or \(\Delta x = 15 \text{ ft} \left(\frac{1 \text{ m}}{3.333 \text{ ft}} \right) = 4.5 \text{ m} \). Similarly, the total vertical displacement is from \(y_i = 2.0 \text{ m} \) to \(y_f = 10 \text{ ft} = 3.0 \text{ m} \), or \(\Delta y = 1.0 \text{ m} \). When the ball reaches the hoop, its vertical velocity component must be \(v_{yf} = 0 \). Thus, we know that the initial \(y \)-component of the velocity is \(v_{yi} = \sqrt{-2g\Delta y} = \sqrt{-2(-9.8)(1.0)} = 4.4 \text{ m/s} \). The ball is in the air for \(t = \frac{-v_i}{g} = \frac{-4.4}{-9.8} = 0.45 \text{ s} \), so the \(x \)-component of the velocity must be \(v_x = \frac{\Delta x}{t} = \frac{4.5}{0.45} = 10.0 \text{ m/s} \).

Thus, the initial velocity vector is \(\vec{v}_i = [10.0\hat{x} + 4.5\hat{y}] \text{ m/s} \).

4. Since \([v] = \frac{m}{s} \) and \([r] = m \), the quantity \(A \) must have units \([A] = \frac{[v^2]}{[v]} = \frac{m^2/s^2}{m/s} = \frac{m}{s^2} \).

It is an acceleration (in fact, it’s the centripetal acceleration for an object undergoing uniform circular motion. We’ll see this again soon!)