Objectives and Outcomes
To master the principles of the art and science of computer graphics and become proficient in the design and programming of interactive graphics applications. The emphasis is on learning how to architect and write graphics software, rather than on learning how to use graphics software that has already been developed. Students will be exposed to basic computational geometry and OpenGL programming, while gaining exposure to other technologies such as graphics in Java.

Prerequisites/Prior Background
Mastery of a programming language such as Java, C, or C++; expert knowledge of data structure and algorithm design; some familiarity with object-oriented programming, computer hardware, and operating systems.

Materials and Texts
- Assorted handouts, articles, and sample code to be distributed throughout the semester

The following texts are recommended and not required — but they will fill in a lot of details in case you’re interested:
- Andrew S. Glassner, Graphics Gems I, Morgan Kaufmann, 1990

Additional information is also available on the web; do not hesitate to look for further sources of information regarding the concepts, techniques, tools, and paradigms that we will discuss.

Course Work and Grading
Graded coursework consists of homework (25%), 1 midterm (25%), 1 graphics project (25%), and 1 final exam (25%). Letter grades are determined as follows: ≥ 90% gets an A– or better; ≥ 80% gets a B– or better; ≥ 70% gets a C– or better. The instructor may curve grades upward based on qualitative considerations such as degree of difficulty, effort, class participation, time constraints, and overall attitude throughout the course. Grades are never curved downward.

Homework
Homework consists of questions, exercises, and programming assignments to be given throughout the semester. Homework is where you can learn from your mistakes without grading penalty: if you do the work and submit it on time, you will get full credit, regardless of correctness. What goes around comes around: the effort you put into your homework pays off in the tests and the graphics project. The homework submission deadline is always the beginning of class on the designated due date; the due date is encoded in the homework number. Submissions after the deadline receive half credit, period. Extra credit homework may be assigned; fulfilling this is counted on top of the 25% allocation of homework to your final grade.

Tests
The midterm is scheduled for February 25; the final exam is scheduled for May 6. The tests are meant to assess the foundational knowledge presented in the course; questions include content-oriented elements as well as forward-looking, applicative portions (i.e., “use this knowledge to resolve this situation”). Tests are open-paper-everything; no sharing. “Open computer” might be allowed depending on the circumstances. You may neither solicit nor give help while the exam is in progress. Late and/or missed tests are handled on a case-to-case basis; in all instances, talk to me.
Graphics Project

The graphics project is a portable, interactive, and richly rendered 3D model of your choosing. Portable means that your project will need, at most, a recompile to run on multiple platforms. Interactive means that the user can make dynamic changes to the application's model or view. Richly rendered means that the 3D object must be displayed in as sophisticated a manner as possible (i.e., no wireframes or flat polygons), with techniques ranging from lighting/textures/blending to a vertex or fragment shader. The project also has a group element: all 3D objects will be part of a single shared program that serves as a “gallery” for the entire class.

The graphics project will be graded according to the following criteria:

1. **Design (30%)**: How good is the overall structure of the code? Is it clear, flexible, and easy to maintain? Is it elegant or innovative? How well does it apply the principles of “separation of concerns” and “one change, one place”?

2. **Functionality (30%)**: How well does the code work? Does it fulfill requirements? Are its results accurate or correct? Does it perform its tasks in a reasonable amount of time? How well do unit tests validate the code?

3. **Naming (20%)**: Are program entities — classes, subroutines, variables, etc. — clearly and consistently named? Do their names correspond to their functions and roles?

4. **Comments (15%)**: Are comments provided where appropriate? Are they clear and well-written? Does the code take advantage of any special support for comments provided by the project language or platform?

5. **Version control (5%)**: Is the code committed at reasonable intervals? Are adequate descriptions provided in the commit logs?

Graphics project deliverables are due on May 6. Late projects will not be accepted.

Attendance

Attendance at all sessions is expected, but not absolutely required. If you must miss class, it is your responsibility to keep up with the course work. Note that the last day to add or drop a class without a grade of W is January 25. The withdrawal or credit/no-credit status deadline is March 26.

Special Accommodations

Students with special needs who need reasonable modifications, special assistance, or accommodations in this course (such as a documented disability [physical, learning, or psychological]) should contact the Disability Services Office (Daum Hall, Room 224, x84535, http://www.lmu.edu/dss) as early in the semester as possible. All discussions will remain confidential. In addition, please schedule an appointment with the instructor early in the semester to discuss any accommodations for this course for which you have been approved.

University Policy on Academic Honesty

Loyola Marymount University expects high standards of honesty and integrity from all members of its community. All students are expected to follow the LMU honor code, as stated in the LMU Undergraduate Bulletin 2008-2010, pp. 58–59 (online at http://www.lmu.edu/Page13245.aspx).

Topics and Important Dates

This schedule may change based on the actual ebb and flow of the class; deadlines, exams, and university dates (italicized) are less likely to change than lecture topics.

<table>
<thead>
<tr>
<th>January</th>
<th>How to use OpenGL</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 25</td>
<td>Last day to add or drop a class without a grade of W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>February</th>
<th>Graphics and memory; transforms; object modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 25</td>
<td>Midterm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>March</th>
<th>Viewing and projection; clipping; hidden surface removal; shading</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 26</td>
<td>Withdraw/credit/no-credit deadline</td>
</tr>
<tr>
<td>March 29 to April 2</td>
<td>Spring break; no class</td>
</tr>
</tbody>
</table>

April | Graphics primitives; miscellaneous topics (time permitting) |

| May 6 | Final exam, 8am; graphics project due |

You can view the class calendar on the web at http://ical.me.com/dondi/LMU, or via iCalendar at webcal://ical.me.com/dondi/LMU.ics.