Evaluating Interface Designs

• Regardless of any insights, theories, or forethought that goes into an interface design, it must ultimately be evaluated and tested

• The major talent with testing is the broad spectrum of choices, each with its own +/– balance

• Some parameters that determine the most appropriate approach have been offered up: stage of design, novelty of project, number of expected users, criticality of the interface, costs and available funding, time available, and experience of the design and evaluation team

• Testing and evaluation ranges from informal, inexpensive tests to elaborate, expensive plans, especially for life- or mission-critical applications — increasingly in industry it has shifted from “want” to “need,” becoming more and more intrinsic to standard engineering practice

• In the end, tests still cannot provide guarantees:
 ◊ Problems will be found even after release, so mechanisms must be in place to handle these
 ◊ Prioritization balances the need to meet deadlines and the need to reach a certain degree of quality
 ◊ Some systems have so many variables and possible usage scenarios that absolute comprehensiveness before real-world use is difficult
Expert Reviews

• **Expert reviews** are a relatively low-overhead, time-friendly approach to evaluation; put simply, show the design to acknowledged experts, and have them provide feedback, which can range from informal discussions to a full formal report with recommendations.

 ◊ *Application domain* experts know the real-world tasks and objects in the application.
 ◊ *User interface domain* experts know the general principles of interaction design; they may need a significant amount of training on the application domain.

• Expert reviews should aim for comprehensiveness, not pinpoint critiques; they should also supply priorities and estimated effort.

 ◊ Many expert-review methods are possible:

 ◊ *Heuristic evaluation* looks at a design based on some established heuristics (e.g., Nielsen’s 10, Shneiderman’s 8 golden rules, Tognazzini’s first principles).
 ◊ *Guidelines review* checks a design against established guidelines documents.
 ◊ *Consistency inspection* focuses on consistency at various levels: terms, fonts, colors, etc.; this is amenable to automation.
 ◊ *Cognitive walkthrough* is user- and task-oriented: “a day in the life” scenarios have experts go through typical user tasks.
 ◊ *Formal usability inspection* involves a piecemeal presentation of a design in front of experts, with designers justifying design decisions and experts indicating problems.

• In the end, expert reviews are produced by individuals, and as such are subject to subjective pitfalls:

 ◊ Insufficient knowledge of the application domain and user base.
 ◊ Conflicting opinions among experts (“For every PhD, there is an equal and opposite PhD.”)
 ◊ Experienced experts may lose sight of how first-time users might behave.
Usability Testing and Laboratories

- Once considered a nice luxury in the presence of extra time and resources, in-house testing procedures are increasingly integral to the development process.

- Distinction between traditional controlled-experiment testing (i.e., the scientific method) and advertising- or marketing-influenced approaches — in one case, the goal is to validate/invalidate a hypothesis; in the other, the goal is to find areas for “improvement”.

- In the end, lab testing is still lab testing — it doesn’t replace real-world environments and sustained use.

- Large development shops may maintain a general-purpose usability laboratory that can test the full spectrum of possible products, equipped with:
 - One-way mirror for live observation
 - Video-recording equipment for later study, particularly to capture users “thinking aloud”
 - Software instrumentation, also for later study

- Different types of usability test are also possible:
 - Paper mockups can be performed early, at little cost
 - Discount usability testing, proposed by Nielsen, is a scaled down approach based on an 80-20 rule of sorts — the most glaring flaws can be found even by the smallest tests
 - Competitive usability testing compares previous versions or competing products
 - Universal usability testing emphasizes diversity of users, platforms, devices, etc.
 - Field tests and portable labs try to perform tests in a more realistic environment
 - Remote usability testing tries to use the Internet to facilitate online tests
 - Can-you-break-this tests, pioneered by game designers, focus on finding fatal flaws
Survey Instruments

• Surveys are relatively inexpensive, even for large numbers of respondents; surveys may also feel familiar and “comfortable” to managers and other stakeholders

• Statistical rigor and avoidance of bias are important, as with any survey activity

• Shneiderman et. al. developed the Questionnaire for User Interaction Satisfaction (QUIS), which has since been widely adopted as a survey instrument

 ◇ Short and long forms, depending on users — short form focuses on general questions, while the long form adds questions on specific design details

Acceptance Tests

• Adapted from standard engineering procedures, acceptance tests consist of verifiable, quantifiable assertions on the performance of a design, such as:

 ◇ Time to learn specific functions
 ◇ Time to perform a task
 ◇ Maximum acceptable error rate
 ◇ Retention over time
 ◇ Subjective satisfaction (collected, perhaps, by QUIS)

• Avoids generic, subjective language like “user-friendly;” sets easy benchmarks for success/failure
Active-Use Evaluation

- The previous approaches generally perform evaluation *before* final product release — an ounce of prevention

- But continued evaluation *after* release is also valuable:
 - *Interviews and focus groups* can reveal new information
 - *Logging* facilitates coverage of all active users, and provides quantitative data; just watch out for privacy concerns
 - *Technical support* (phone, online, e-mail) not only provides direct assistance but also new insights for improving a product’s design
 - *Suggestion boxes or feedback forms* help elicit direct comments from users
 - *Discussion groups* allow interactions among users, in addition to participation by support staff — again, another possible source of new insights from real-world use

Controlled Experiments

- Finally, we come full-circle to traditional scientific method and controlled tests, with primary influences from psychology, since in the end, we are still studying people in a particular environment

- Controlled experimental results tend to be narrow in scope, but more reliable (and thus replicable) — instead of a single test making a sweeping generalization, multiple tests form a big-picture “mosaic”

- Successful controlled experimentation requires a great degree of training and experience