The Relational Data Model: Fundamental Operations

1 Overview

- Now that we’ve looked at the structure of a relational database, we will look at its fundamental operations — that is, what you can do with that database.

- We can think of relational operations on multiple levels:

 - Pure mathematical abstractions: this would be the relational algebra, and if you go non-procedural, you can sort of think of the relational calculus in this manner — ultimately these form the basis for reasoning about a relational database.

 - Programmatic interaction: when actually interacting with a real live database, we need a programming language — and many programming languages are geared toward database operation. These are typically categorized as query languages; more formally there are data manipulation languages (DMLs) and data definition languages (DDLs).

 * A short list of query languages: SQL, QBE, Datalog, “pure” languages that attempt to translate the relational algebra or calculus directly

- For this handout, we focus on the foundation of it all: the basic operations of the relational algebra.

2 Fundamental Operations

- We have seen that a relational database is a set of relations \(r \), each of which follows a particular relation schema \(R \).

- The fundamental operations define what we can do with these relations. Note that all of these operations take relations as operands and produce relations as results — this is the mathematical property of closure.

- Some of these operations are unary: they take a single relation as an operand. Other operations are binary: they require two relation operands.
2.1 Select

- The select operation is a unary operation on a relation \(r \) that is denoted by the lowercase Greek letter sigma (\(\sigma \)) and includes a predicate \(P \). It is written as:

\[
\sigma_P(r)
\]

The select operation results in a new relation consisting only of the tuples \(t \) in \(r \) for which \(P \) is true.

- \(P \) is a boolean expression that refers to attributes in \(r \) and compares them either to constant values or other attributes via \(=, \neq, <, \leq, >, \geq \).

- Individual comparisons can be combined using logical \textit{and} (\(\land \)), \textit{or} (\(\lor \)), and \textit{not} (\(\neg \)). These operators have the boolean meanings that you probably know and love by now.

- You can think of the select operation as a form of \textit{horizontal partitioning} of the relation.

2.2 Project

- The project operation is a unary operation on a relation \(r \) that is denoted by uppercase Greek letter pi (\(\Pi \)) and includes an attribute list \(A \). It is written as:

\[
\Pi_A(r)
\]

For all tuples \(t \) in \(r \), the project operation results in a new relation consisting of \(t[A] \).

- \(A \) is written as a comma-separated list of attributes.

- Remember that relations are sets, so tuples \(t_1 \) and \(t_2 \) that are not equal in \(r \) but have the same values for \(A \) (that is, \(t_1[A] = t_2[A] \)) become a single tuple in \(\Pi_A(r) \).

- Remember again that the set of all relations is \textit{closed} under these operations; thus, you can \textit{compose} them as needed. For example, a query on a MMORPG database such as “Retrieve the names of all players who belong to server \textit{Dethecus}” can be written as a select followed by a project (assume the relation is named \textit{players}):

\[
\Pi_{\text{player_name}}(\sigma_{\text{server}='\text{Dethecus}'}(\text{players}))
\]

2.3 Union

- The union operation is a binary operation on relations \(r \) and \(s \) that is denoted by the same symbol as in set theory: \(\cup \). It is written as:

\[
r \cup s
\]

The result is a new relation such that \(\forall t_r \in r \) and \(t_s \in s \), \(t_r \in r \cup s \) and \(t_s \in r \cup s \).
• We diverge from set theory in that the union of relations only makes sense if they have *compatible* schemas. Thus, union only applies if all of the following conditions are true:

 - r and s have the same *arity* — meaning that they have the same number of attributes n. Notationally, if A_r is the set of r’s attributes and A_s is the set of s’s attributes, then \(|A_r| = |A_s|\).

 - $\forall 1 \leq i \leq n$, the domain of attribute i in r must be the same as the domain of attribute i in s.

• Note how the requirements are essentially *number of attributes* and *corresponding domains*. Attribute names aren’t involved.

2.4 Set-Difference

• The *set-difference* operation is a binary operation on relations r and s that is denoted by \neg. It is written as:

\[
 r - s
\]

The result is a new relation consisting of tuples t such that $t \in r$ but $t \notin s$.

• As with union, set-difference only makes sense for compatible relations: same arity, corresponding domains.

2.5 Cartesian-Product

• The *Cartesian-product* operation is a binary operation on relations r_1 and r_2 that is denoted by \times. It is written as:

\[
 r_1 \times r_2
\]

If r_1 has schema R_1 and r_2 has schema R_2 (that is, $r_1(R_1)$ and $r_2(R_2)$, $r = r_1 \times r_2$ is a relation whose schema R is the concatenation of R_1 and R_2. The resulting relation r contains all tuples t such that $\exists t_1 \in r_1$ and $t_2 \in r_2$ for which $t[R_1] = t_1[R_1]$ and $t[R_2] = t_2[R_2]$.

• When specifying the schema for some $r_1 \times r_2$ in which r_1 and r_2 have attributes of the same name, we use *dot notation* to prepend the attribute name with the relation name:

\[
 R_1 = (\text{tom, dick, harry}) \\
 R_2 = (\text{harry, hausen}) \\
 R = (\text{tom, dick, } r_1.\text{harry, } r_2.\text{harry, hausen})
\]

• We can take the Cartesian product of a relation with itself. However, we need to distinguish the attributes that came from the first “instance” of the relation from those that came from the second “instance.” For this, we *rename* one of the operands, then use the same dot notation (see Section 2.6).
• It’s easy to figure out how many tuples are in \(r_1 \times r_2 \): if \(r_1 \) has \(n_1 \) tuples and \(r_2 \) has \(n_2 \) tuples, then \(r_1 \times r_2 \) has \(n_1n_2 \) tuples.

• Note how the Cartesian product combines all tuples in \(r_1 \) with all tuples in \(r_2 \) — not very useful. In practice, we perform a select on the Cartesian product, choosing a condition that expresses a meaningful connection between some attribute(s) of \(r_1 \) and \(r_2 \):

\[
\sigma_{\text{westplayer.player}=\text{eastplayer.player}}(\text{westplayer} \times \text{eastplayer})
\]

This Cartesian product followed by a select has a name of its own — it is called a join. More on joins later.

2.6 Rename

• Note how, while we start out with a set of named relations in a relational database, by default, the relations that are results of relational operators don’t have names. For long sequences of operations, or for binary operations that take the same relations as operands, the rename operation presents a solution that eliminates the ambiguity or confusion that may emerge in those situations.

• The rename operation is denoted by the lowercase Greek letter rho (\(\rho \)), specifies a new name \(x \), and accepts any relational expression \(E \) as its operand:

\[
\rho_x(E)
\]

\(E \) is any relational expression, so \(E \) covers everything from a single named relation to a complex sequence of operations on multiple relations.

• It is possible to rename not only a relation but also its attributes. In that case, we can provide an attribute name list \((a_1, a_2, \ldots, a_n) \) — where \(n \) is the arity of \(E \) — along with the new relation name \(x \):

\[
\rho_{x(a_1,a_2,\ldots,a_n)}(E)
\]

• A little footnote — remember that in the pure mathematical theory of relations, attributes don’t have names; they go by number, in the order that they are listed in a relation schema. We accommodate positions by prepending a \(\$ \) sign before the position. Thus, \(\sigma_{\$2=\$3}(r \times r) \) refers to all tuples in the Cartesian product of \(r \) with itself such that the values of the second and third attributes of \(r \times r \) are equal.

 – Positional notation eliminates the need to rename, but it’s hard for people to read, requiring top-of-your-head knowledge of how attributes are ordered in a schema. So generally, we don’t use positional notation.
3 Formal Definition of Relational Algebra

- We now have all of the definitions that we need to formally define relational algebra — specifically, what comprises a valid expression in this algebra.

- A basic expression in the relational algebra is either:
 - A relation in a database
 - A constant (literal) relation: written as a comma-separated sequence of tuples enclosed in braces { }. The tuples themselves are comma-separated sequences of values, enclosed in parentheses ().

- A general expression in the relational algebra is a composition of smaller subexpressions. If E_1 and E_2 are expressions in the relational algebra, then so are these:

 $E_1 \cup E_2$

 $E_1 - E_2$

 $E_1 \times E_2$

 $\sigma_P(E_1)$ where P is a predicate on the attributes of E_1

 $\Pi_S(E_1)$ where S is a list of some of the attributes of E_1

 $\rho_x(E_1)$ where x is the new name for the result of E_1

- And that’s it — everything that you can do with relations can be decomposed ultimately into the above expressions.

- While we’re being mathematical, think about the other properties involved in an algebra:

 - You’ve already seen how these operations have closure within the set of all relations: for a unary operation o and relation r, $o(r)$ is a relation, and for a binary operation \cdot and relations r_1 and r_2, $r_1 \cdot r_2$ is a relation.

 - Which operations are associative — that is, for a given operation \cdot, $(r_1 \cdot r_2) \cdot r_3 = r_1 \cdot (r_2 \cdot r_3)$?

 - Are there identity elements for these operations? That is, for a given operation \cdot, is there a relation r_i such that $r_i \cdot r = r$ and $r \cdot r_i = r \forall$ relations r?

 - Are there inverse elements in these operations? That is, for a given operation \cdot and \forall relations r, is there a relation r^{-1} such that $r \cdot r^{-1} = r_i$ and $r^{-1} \cdot r = r_i$?

If a binary relational operation has these properties, then you have a group with respect to that operation and the set of all relations!

- If you take two relational operations, say $+$ and \cdot, and the following conditions hold for relations:
- + and · are closed,
- + and · are associative,
- + and · are commutative — that is, \(r_1 + r_2 = r_2 + r_1 \) and \(r_1 \cdot r_2 = r_2 \cdot r_1 \),
- · is distributive over + — defined as \(r_1 \cdot (r_2 + r_3) = (r_1 \cdot r_2) + (r_1 \cdot r_3) \) and \((r_1 + r_2) \cdot r_3 = (r_1 \cdot r_3) + (r_2 \cdot r_3) \),
- + has an identity element and inverse elements as defined above

... you have a commutative ring!

- If the · operation in a commutative ring also has an identity element, then you have a commutative ring with identity.

- If the · operation in a ring has inverse elements for every relation except for the relation identified as the identity element for +, then you have a field.

- Why do you care? Once you have identified a group, ring, or field, then that opens a whole slew of known truths about those constructs (theorems, lemmas) — and in many cases, these truths lead to powerful yet practical algorithms, optimizations, and implementations when you finally start to develop a relational database management system.