“Unproject” Explained

• Now that we’ve broken down the math for projections, we can explain the unproject program that was distributed earlier.

• The core issue is: given a mouse event (click, move, drag), how do we translate that event’s mouse coordinates into our 3D world?

• With our projection analysis, we can phrase this question more specifically now: given a set of coordinates on the 2D viewport, what are the corresponding coordinates in 3D space?
Observations

- First off, note from the diagram that a 2D mouse click does not translate into a point, but into a ray — after all, we are adding an entire dimension

- So, we can’t really go from a mouse point to a single 3D point; the best we can do is identify the line along which the mouse point’s 3D equivalent must lie

- OpenGL’s `gluUnProject()` function will help give you that line — but what you do with it after that is up to you

What `gluUnProject()` Does

- `gluUnProject()` inverts the projection calculation; instead of going from a world point to a screen point, which is what projection does...

 \[\text{point in “world”} \rightarrow \text{model-view} \rightarrow \text{projection} \rightarrow \text{viewport} \rightarrow \text{point on “screen”} \]

- …we take the screen point and go the other way:

 \[\text{point on “screen”} \rightarrow \text{viewport}^{-1} \rightarrow \text{projection}^{-1} \rightarrow \text{model-view}^{-1} \rightarrow \text{point in “world”} \]

- With this in mind, the signature of the `gluUnProject()` function should now be pretty self-explanatory:

 \[\text{GLint gluUnProject (GLdouble winX, GLdouble winY, GLdouble winZ, const GLdouble *} \text{model, const GLdouble *} \text{proj, const GLint} \text{view, GLdouble}^{*} \text{objX, GLdouble}^{*} \text{objY, GLdouble}^{*} \text{objZ);} \]

gluUnProject() Double-Take

- Given what we have said so far, some parts of `gluUnProject()`’s signature may have you wondering:
 - Why does the screen (“win”) point have a z-coordinate?
 - Since the result of the function is a 3D point, the output arguments are passed as pointers; so what is that integer that the function returns directly?

- We answer the second question first: not all matrices are invertible — thus, `gluUnProject()` might not succeed, in which case it will return `GL_FALSE`, with successful inversion returning `GL_TRUE`

- Now back to that z-coordinate on the “screen…”

- Recall that, during the final drawing to the viewport, we happen to not need the z coordinate; however, as you have seen from the matrices, we do get a value for the z axis…so, even though we don’t use z in the final drawing, it can (and does) get calculated

- It turns out that, the way OpenGL calculates things, \(winZ == 0.0 \) (the screen) corresponds to \(objZ == -N \) (the near plane), and \(winZ == 1.0 \) corresponds to \(objZ == -F \) (the far plane)

- Since two points determine a line, we actually need to call `gluUnProject()` twice: once with \(winZ == 0.0 \), then again with \(winZ == 1.0 \) — this will give us the world points that correspond to the mouse click on the near and far planes, respectively
Typical $\text{gluUnProject}()$ Sequence

Now that we know what $\text{gluUnProject}()$ specifically does, we can sketch out its general use, given some screen coordinate (mx, my):

- Invert the my coordinate (since the screen y-axis goes in the opposite direction as the 3D y-axis)
- Grab the current values for the three matrices: model-view, projection, and viewport
- Call $\text{gluUnProject}()$ twice, once for $(mx, my, 0.0)$ and again for $(mx, my, 1.0)$

- Once you have the two points, what you do next now depends on how you’re representing the objects in your model
- Generally, you would test to see which objects intersect that line, then choose one of them as the “hit” object, and act accordingly
- Bilinear interpolation is useful here: since you know two endpoints, you can represent their line in terms of a single argument u, where $u = 0$ corresponds to the near point, and $u = 1$ corresponds to the far point

$$L(u) = \text{nearPoint} + u(\text{farPoint} – \text{nearPoint})$$

◊ In the sample program, we’re testing against a fixed plane with a known z, so we solve for u using bilinear interpolation using the z coordinates, then use u to subsequently calculate x and y, the resulting (x, y, z) is the point on the plane that was “clicked on” by the mouse