Clipping

• Remember, we are in implementation mode now, and so we need to worry about drawing things out of bounds — a process called clipping.

• Clipping isn’t just a matter of deleting points that are outside our desired bounds; it also includes calculating where shapes intersect the bounds because in essence that is what we’re really drawing.

Clipping Algorithms

• Many clipping algorithms — in pure form, they are independent of number of dimensions, but for simplicity we will look at the 2D versions.

• General criteria for a good clipping algorithm:
 – Quickly identify lines (or polygon edges) that need not be drawn at all
 • These can be skipped and discarded
 – Quickly identify lines (or polygon edges) that are completely contained within the drawing bounds
 • These can be drawn without modification
 – For the lines that are neither (i.e. they cross display boundaries), calculate their intersections as quickly as possible
 • The less of these we do, the better
Cohen-Sutherland Clipping

- Translate boundary crossings into bit fields; for example, in 2D this is 4 bits, one each to represent in/out the top, bottom, right, or left boundaries (0 = in bounds, 1 = out of bounds)

<table>
<thead>
<tr>
<th>1001</th>
<th>1000</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>0000</td>
<td>0010</td>
</tr>
<tr>
<td>0101</td>
<td>0100</td>
<td>0110</td>
</tr>
</tbody>
</table>

Cohen-Sutherland Algorithm

- For every vertex \((x, y)\), initially assign 0000
- If \(x > R\) then set bit 1 else if \(x < L\) then set bit 0
- If \(y > T\) then set bit 3 else if \(y < B\) then set bit 2
 - Note how when \(x = R\) or \(x = L\), or \(y = T\) or \(y = B\), the corresponding bit is still zero; equality = in bounds

- Now, for every line segment \((x_1, y_1)\) to \((x_2, y_2)\):
 - If both line segments are 0000, then draw line; we’re done \((accept)\)
 - If \(code_1 \& code_2\) (bitwise and), then skip line; we’re done \((reject)\)
 - Otherwise, calculate the intersection with a boundary; re-encode then reconsider this new pair of endpoints
Liang-Barsky Clipping

- Remember linear interpolation? It allows us to write a line in terms of a parameter u from 0.0 to 1.0: $x = x_1 + u (x_2 - x_1), y = y_1 + u (y_2 - y_1)$
- Liang-Barsky asks: for what values of u does a line segment enter or exit the bounds?
- There can be, at most, two of each; we care about the maximum entry value and the minimum exit value
 - For each line segment, for each boundary, check the value of u at the intersection of the segment’s line with that boundary
 - If $u < 0$ on entry and $u > 1$ on exit — accept
 - If $u > 1$ on entry or $u < 0$ on exit — reject
 - If u on entry > u on exit — reject
 - Otherwise, clip and try again — note how we don’t need to perform an extra calculation, because the new point can be derived from u

Line 1: max entry < 0, min exit > 1 — accept
Line 2: max entry > 1, min exit > 1 — reject
Line 3: max entry < 0, min exit < 0 — reject
Line 4: max entry > min exit — reject
Line 5: max entry > 0, min exit < 1, max entry < min exit — clip
Liang-Barsky Algorithm

• For a given line segment \((x_1, y_1)\) to \((x_2, y_2)\), derive the parametric form of its line:
 \[x = x_1 + u(x_2 - x_1), \quad y = y_1 + u(y_2 - y_1) \]
• For each boundary \((L, R, T, B)\), calculate the value of \(u\) for that line at that boundary; note that a point is within the boundary if:
 \[L \leq x \leq R \text{ and } B \leq y \leq T \]
• Substituting the parametric form, let:
 \[dx = x_2 - x_1, \quad dy = y_2 - y_1 \]
 \[L \leq x_1 + u(dx) \leq R \quad \text{and} \quad B \leq y_1 + u(dy) \leq T \]
• If we break these inequalities up, we get these conditions:
 \[-dx(u) \leq x_1 - L \quad \Rightarrow \quad \text{let } C = -dx, \quad q = x_1 - L \]
 \[dx(u) \leq R - x_1 \quad \Rightarrow \quad \text{let } C = dx, \quad q = R - x_1 \]
 \[-dy(u) \leq y_1 - B \quad \Rightarrow \quad \text{let } C = -dy, \quad q = y_1 - B \]
 \[dy(u) \leq T - y_1 \quad \Rightarrow \quad \text{let } C = dy, \quad q = T - y_1 \]

Liang-Barsky Algorithm cont’d

• Note how, for each \(C\) and its corresponding boundary:
 \[C < 0 \quad \Rightarrow \quad \text{line goes out} \rightarrow \text{in: entry} \]
 \[C > 0 \quad \Rightarrow \quad \text{line goes in} \rightarrow \text{out: exit} \]
 \[C = 0 \quad \Rightarrow \quad \text{line is parallel to the boundary} \]
• So, we can calculate \(u\) for each boundary by calculating \(q\) and \(C\); the value of \(C\) tells us if we are looking at an entry or exit point for the boundary. Thus, we can now apply the conditions:
 \[- \quad \text{If } u < 0 \text{ on entry and } u > 1 \text{ on exit} \quad \rightarrow \quad \text{accept} \]
 \[- \quad \text{If } u > 1 \text{ on entry or } u < 0 \text{ on exit} \quad \rightarrow \quad \text{reject} \]
 \[- \quad \text{If } u \text{ on entry} > u \text{ on exit} \quad \rightarrow \quad \text{reject} \]

• This gives us the final algorithm, given in Ada-like code just for fun…
procedure ClipAndDrawLine(x1, y1, x2, y2: real) is
 u1: real := 0.0;
 dx: real := x2 - x1;
 u2: real := 1.0;
 dy: real := y2 - y1;

 function Reject(C, q: real) return boolean is
 u: real := q / C;
 begin
 if C < 0 then
 if u > u2 then return true;
 elsif u > u1 then u1 := u;
 end if;
 elsif C > 0 then
 if u < u1 then return true;
 elsif u > u2 then u2 := u;
 end if;
 else
 if q < 0 then return true;
 end if;
 return false;
 end Reject;
begin
 if Reject(-dx, x1 - L) then return; end if;
 if Reject(dx, R - x1) then return; end if;
 if Reject(-dy, y1 - B) then return; end if;
 if Reject(dy, T - y1) then return; end if;
 if u2 < 1.0 then (x2, y2) := (x1 + u2 * dx, y1 + u2 * dy); end if;
 if u1 > 0.0 then (x1, y1) := (x1 + u1 * dx, y1 + u1 * dy); end if;
 DrawLine(x1, y1, x2, y2);
end ClipAndDrawLine;

How About Polygons?

- Clipping polygons complicates the problem because we have to take account the enclosed area
- Also, where line segment clipping always maps two points to two (possibly other) points, polygon clipping may actually change the number of points after clipping
Even More Extreme…

• In the ultimate extreme case, we may even end up with more than one polygon after clipping!

Sutherland-Hodgman Polygon Clipping

• If we consider a clipping algorithm to be a black box that takes a set of vertices then produces a new set of clipped vertices, then without loss of generality we can clip along one border at a time and string them together — like a pipeline:
in
out

in – in: B
in – out: F
out – out: reject
out – in: EA

output for this border: ABFEA
How About 3D?

- All algorithms extrapolate to 3D:
 - Cohen-Sutherland: add inside/outside bits for z axis
 - Liang-Barsky: add parametric equation for z coordinate
 - Sutherland-Hodgman: add pipes for near and far clipping

- Remember: clip in 3D, then project
 - One of the reasons why the projection matrix is “held” separately from the modelview matrix
 - Otherwise, you’ll end up projecting points to the near plane that shouldn’t be projected anyway
 - Worse yet, you’ll end up projecting points that are behind the camera and the near plane — that will actually result in an erroneous display!