Animation and Basic Image Manipulation

- Knowing that pixels are ultimately some set of byte/bit values yields a number of fundamental graphics techniques

- Animation
 - Palette-based animation
 - XOR-based animation
 - Sprite animation
 - Full-frame animation ≠ what most computers use today

- Basic image manipulation
 - Color adjustments
 - Brightness and contrast
 - Bit-level effects

Animation

- Let us count the ways…

- Palette animation
 - Takes advantage of the indexed/indirect method of representing graphics
 - Image stays the same; only the palette changes
 - Older hardware was very good at doing this

![Palette animation diagram]

Rotate among these palettes in turn.
More Animation

• XOR-based animation
 – Takes advantage of the fact that \(((a \text{ xor } b) \text{ xor } b) = a\)
 • \(((0 \text{ xor } 0 = 0) \text{ xor } 0) = 0\)
 • \(((0 \text{ xor } 1 = 1) \text{ xor } 1) = 0\)
 • \(((1 \text{ xor } 0 = 1) \text{ xor } 0) = 1\)
 • \(((1 \text{ xor } 1 = 0) \text{ xor } 1) = 1\)
 – Generally works well only on black-and-white graphics
 – Useful for transient effects like rubberbanding

• Sprite animation
 – Small, mini-images are called “sprites”
 – Read target background; paint sprite; paint background over sprite
 – Basis for a whole generation of video games

Full-Frame Animation (a.k.a. Double Buffering)

• Today’s hardware can do this no sweat, so this is how it’s done pretty much everywhere these days
 – Maintain two “animation frames” — one is on display, and the other one is hidden; each frame corresponds to a block of memory — a buffer
 – While showing the content of one buffer, draw the next frame into the hidden buffer
 – Swap buffers; user can now see the “new” buffer
 – Rinse and repeat
Full-Frame Animation in GLUT

• GLUT uses this very technique for general drawing. In your sample code, these lines are directly related to full-frame animation:
 – in main()
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
 requests double buffering requests direct RGB display
 – in display()
 glutSwapBuffers();
 swaps the buffers; makes the scene that you just drew visible, and makes sure that the next invocation of display() is on the other buffer
 – in any code that needs an update
 glutPostRedisplay();
 requests that display() be invoked so that the “next” frame can be drawn and displayed

Basic Image Manipulation

• Since colors are just numbers after all, it stands to reason that manipulating these numbers somehow will result in some recognizable color effects

• “Filtering” — showing only the red, green, or blue elements of an image

• Brightness and contrast — manipulating all three components in a coordinated fashion

• Bit-level effects — combining two images using bit-oriented operations