Alternative Rendering Approaches

• This semester’s material has been influenced by a key constraint: “real-time” or “interactive” computer graphics — this implies that a user can actively influence a displayed scene at a sufficiently rapid rate

• However we have seen that this constraint results in certain tradeoffs — in particular, lighting and shading is necessarily local, to avoid the computational complexity of multiple objects interacting with each other

• So…what if it doesn’t have to be real-time?

Ray Tracing

• Instead of rendering from vertex to pixel, render from pixel to vertex

• For every pixel in the screen display, cast a ray from the eye through the pixel into the scene

• As the ray travels through the scene, modify the light that affects that ray as it hits objects and light source

• Naturally recursive: cast a ray, and when the ray hits “something,” cast one or more rays or terminate — the color upon termination is the color of the pixel
Where the Ray Can Go

• *Ray intersects nothing* — return background color

• *Ray intersects a surface* — recursively cast one or more rays from that surface
 ◦ *Reflected ray*: light bouncing off that surface
 ◦ *Transmitted ray*: lighting emitted by or passing through that surface

• *Ray intersects a light source* — return the color of that light source

• Arbitrary shadows, reflections, and translucency “for free” — natural consequence of following rays through each pixel

• Computational complexity: numbers of surfaces and rays cast are not easily bounded, and thus this is not a “real time” approach

• Key function is *intersection* — which objects does a ray hit? Function varies according to type of object and how they are represented, and is pretty much the key operation in the algorithm

• Ray tracing without recursion (e.g., terminate at background or a single surface) == local lighting
The Rendering Equation

• Theoretical foundation for a number of specific implementations

• Based on physics conservation laws: the amount of energy emitted (light sources) is the same as the amount of energy absorbed and reflected (material properties)

\[i(p, p') = v(p, p') \left[\epsilon(p, p') + \int \rho(p, p', p'') i(p', p'') \, dp'' \right] \]

• \(i \) is the light at point \(p \) coming from point \(p' \)

• \(v \) is either:
 ◇ zero if an opaque surface lies in between \(p \) and \(p' \)
 ◇ \(1 / \text{distance}^2 \) otherwise

• \(\epsilon \) is the light, if any, that is emitted at \(p' \) (in other words, \(p' \) is a light source)

• \(p'' \) represents the set of points whose light is reflected by \(p' \) toward \(p \); \(\rho \) represents how the material properties of \(p' \) affect that light, and \(i \) represents this same function for \(p' \) and \(p'' \)
Radiosity

- Simplification of the rendering equation through a key assumption: what if all surfaces were perfectly diffuse (i.e., they reflect light equally in all directions)

- Then, we can capture diffuse–diffuse interactions — in other words, how does light reflected by a perfectly diffuse surface affect the other perfectly diffuse surfaces around it?

- With radiosity rendering, each surface is called a patch, and each patch has a single color, derived through conventional lighting models

- Given n patches from 1 to n, for every patch i, let b_i be the light reflected by that patch per unit area

- If a_i is the area of patch i, then the total light reflected is $b_i a_i$ (light per unit area times area)

- Given a possible component e_i representing light emitted by patch i, a reflective component ρ_i that represents the light from other patches that strike patch i, and a form factor f_{ij} that represents how the light from some patch j affects patch i, one can model the total light from patch i as:

$$b_i a_i = e_i a_i + \rho_i \sum_{j=0}^{n} f_{ij} b_j a_j$$
Equation Derivation

• The reciprocity equation expresses that the relationship between two patches i and j has a degree of symmetry:

$$f_{ij} a_i = f_{ji} a_j$$

• Thus, we can swap a_i for a_j (since we are looping through all i then summing through all j):

$$b_i a_i = e_i a_i + \rho_i \sum_{j=0}^{n} f_{ij} b_j a_i$$

• Divide through by a_i for the final radiosity equation:

$$b_i = e_i + \rho_i \sum_{j=0}^{n} f_{ij} b_j$$

• Note how, as the area gets infinitely smaller, the summation becomes integration — and the radiosity equation becomes the rendering equation

• Solving the radiosity equation serves as the basis for radiosity rendering

• Key trick — calculating the form factor: essentially, how the relative distances and angles from one patch to another modify the energy sent by one patch to the other patch