Introduction to Computer Science

http://myweb.lmu.edu/dondi/fall2009/cmsi182

Fall 2009 — Doolan 222
TR 10:50–12:05pm, 3 semester hours
Office Hours: TR 9-10:30am, R 3–6pm, or by appointment

John David N. Dionisio, PhD
e-mail: dondi@lmu.edu, AIM: dondi2LMU
Doolan 106; (310) 338-5782

Objectives and Outcomes

This course is built upon L. Dee Fink’s taxonomy of significant learning, as applied to computer science “for the rest of us.” Long after the course concludes, my hope is that you will:

• remember and understand the central ideas of computer science, including algorithms, abstractions, and how to discover, describe, and implement them,
• easily recognize computer science concepts in your daily life,
• readily relate current events and new products to applicable computer science concepts,
• see yourself as capable of handling computer science material,
• care about the ethical use of computer science and technology, and
• value the content and relevance of computer science as a field of study, in everyday situations, and in your own individual discipline.

There are no prerequisites to this course — it is designed for, and open to, absolutely anyone.

Materials and Texts

• Assorted handouts, articles, and sample code to be distributed throughout the semester.

The following text is recommended and not required — but it will fill in a lot of details in case you’re interested:

Additional information is also available on the web; do not hesitate to look for further sources of information regarding the concepts, techniques, tools, and paradigms that we will discuss.

Course Work and Grading

Course work consists of homework (25%), 1 midterm (25%), 1 term portfolio (25%), and 1 final exam (25%). Numeric grades \(\geq 90\% \) get an A– or better; \(\geq 80\% \) get a B– or better; \(\geq 70\% \) get a C– or better. I may curve grades upward based on qualitative considerations such as degree of difficulty, effort, class participation, time constraints, and overall attitude throughout the course. Grades are never curved downward.

Homework

Homework consists of questions, exercises, programming assignments, and reflections to be given throughout the semester. Homework is where you can learn from your mistakes without grading penalty: if you do the work and submit it on time, you will get full credit, regardless of correctness. What goes around comes around: the effort you put into your homework pays off in the tests and the portfolio. Plus, assignments with reflection components allow you to take stock of how the course is going for you.

The homework submission deadline is always the beginning of class on the designated due date; the due date is encoded in the homework number. Submissions after the deadline receive half credit, period. Extra credit homework may be assigned; fulfilling this is counted on top of the 25% allocation of homework to your final grade.

Tests

The midterm is initially scheduled for October 8. The final exam is scheduled for December 15. All tests are open-paper-everything; no sharing. “Open computer” might also be allowed. You may neither solicit nor give help during exams. Late and/or missed tests are handled on a case-to-case basis; in all instances, talk to me about them.
Term Portfolio

Due to the nature of many of the homework assignments that you will get, you may feel that if you “had another go” at the work, you can do much better than in the initial submission. For this course, you can have this “other go” at the end of the semester, you will be asked to resubmit a subset of these assignments in a term portfolio — a showcase of sorts for your newfound computer science skills. This will be graded more closely; presumably, by the end of the semester, you will know this stuff better, and will be able to clean up and improve your prior work.

Written work will be graded along these criteria:
1. Content (40%): Includes the requested information; substantive, not shallow
2. Organization (30%): Structures information well; ideas flow smoothly from one to the other
3. Writing (20%): Precise language, proper tone, clear statements, correct grammar
4. Polish (10%): Evidence of proofreading and multiple reviews; no misspellings nor typos; care given to presentation and formatting

Technical work will be graded along these criteria:
1. Design (30%): Clarity, flexibility, and ease of maintenance; elegance and innovation; applies proper separation of concerns; satisfies the “one change, one place” property
2. Functionality (30%): Works as intended; produces correct answers/results; performs in a reasonable amount of time; includes tests that demonstrate correct behavior
3. Naming (20%): Clarity and consistency; names correspond to roles, types, or actions
4. Documentation (20%): Presence of README or overview material; abundance of comments in code; genuinely useful information

The term portfolio is due on December 15. Late portfolios will not be accepted.

Attendance

Attendance at all sessions is expected, but not absolutely required. If you must miss one or more class sessions, it is your responsibility to keep up with the course work. Note that the last day to add or drop a class without a grade of W is September 4. The withdrawal or credit/no-credit status deadline is November 6.

Special Accommodations

Students with special needs who need reasonable modifications, special assistance, or accommodations in this course (such as a documented disability [physical, learning, or psychological]) should contact the Disability Services Office (Daum Hall, Room 224, x84535, http://www.lmu.edu/dso) as early in the semester as possible. All discussions will remain confidential. In addition, please schedule an appointment with the instructor early in the semester to discuss any accommodations for this course for which you have been approved.

University Policy on Academic Honesty

Loyola Marymount University expects high standards of honesty and integrity from all members of its community. All students are expected to follow the LMU honor code, as stated in the LMU Undergraduate Bulletin 2008-2010, pp. 58–59 (online at http://www.lmu.edu/Page13245.aspx#honorcode).

Topics and Important Dates

Specifics may change as the course progresses; university dates (italicized) are less likely to change.

September
- Algorithms and puzzles; introduction to programming
- September 4 Last day to add or drop a class without a grade of W

October
- Today’s computers: bits and chips; operating systems
- October 8 Midterm

November
- Networking and the Internet; artificial intelligence
- November 6 Withdraw/credit/no-credit deadline
- November 25–27 Thanksgiving; no class

December
- Other computer science subfields
- December 15 Final exam, 11am; term portfolio due

You can view the class calendar on the web at http://ical.me.com/dondi/LMU, or via iCalendar at webcal://ical.me.com/dondi/LMU.ics.

LMU has published H1N1 flu prevention guidelines that are applicable to this course: http://www.lmu.edu/resources/emergency/status/H1N1.htm