Course Objectives
To present a survey of computer science as a field of study, ranging from its theoretical foundations to its practical applications. The course work includes much learning by doing; you will be asked to do work that is similar to what computer scientists — in industry as well as the academe — do everyday. At the same time, the course seeks to show how this work fits into the “big picture” of computer science as a discipline.

Course Requirements
A willingness to listen, to step out of one’s “intellectual comfort zone,” and to participate actively in class discussions. Some familiarity with computers, operating systems, Web technologies, and mathematics is helpful but not absolutely necessary.

Materials and Texts
- Assorted handouts, articles, and sample code to be distributed throughout the semester.
The following text is recommended and not required — but it will fill in a lot of details in case you’re interested:

Additional information is also available on the Web; do not hesitate to look for further sources of information regarding the concepts, techniques, tools, and paradigms that we will discuss.

Course Work and Grading
Graded coursework consists of homework (25%), 1 midterm (25%), 1 term portfolio (25%) and 1 final exam (25%). Letter grades are determined as follows: ≥ 90% gets an A– or better; ≥ 80% gets a B– or better; ≥ 70% gets a C– or better. The instructor may curve grades upward based on qualitative considerations such as degree of difficulty, effort, class participation, time constraints, and overall attitude throughout the course. Grades are never curved downward.

Homework
Homework consists of questions, exercises, and programming assignments to be given throughout the semester. Homework is where you can learn from your mistakes without grading penalty: if you do the work and submit it on time, you will get full credit, regardless of correctness. What goes around comes around: the effort you put into your homework pays off in the tests and the portfolio. The homework submission deadline is always the beginning of class on the designated due date; the due date is encoded in the homework number. Submissions after the deadline receive half credit, period. Extra credit homework may be assigned; fulfilling this is counted on top of the 25% allocation of homework to your final grade.

Tests
The midterm is initially scheduled for October 4. The final exam is scheduled for December 13. All tests are open-paper-everything; no sharing. “Open computer” might also be allowed depending on the scope, subject matter, or circumstances. You may neither solicit nor give help while the exam is in progress. Late and/or missed tests are handled on a case-to-case basis; in all instances, talk to me about them.

Term Portfolio
Due to the nature of many of the homework assignments that you will get, you may feel that if you “had another go” at the work, you can do much better than in the initial submission. For this course, you can have this “other go” at the end of the semester, you will be asked to resubmit a subset of these assignments in a term portfolio — a showcase of sorts for your newfound computer science
skills. This will be graded more closely; presumably, by the end of the semester, you will know this stuff better, and will be able to clean up and improve your prior work.

When an item in the portfolio involves programming, it will be graded along these criteria:

1. **Design (30%)**: How good is the overall structure of the code? Is it clear, flexible, and easy to maintain? Is it elegant or innovative? How well does it apply the principles of “separation of concerns” and “one change, one place?”

2. **Functionality (30%)**: How well does the code work? Does it fulfill requirements? Are its results accurate or correct? Does it perform its tasks in a reasonable amount of time? How well do unit tests validate the code?

3. **Naming (20%)**: Are program entities — classes, subroutines, variables, etc. — clearly and consistently named? Do their names correspond to their functions and roles?

4. **Comments (20%)**: Are comments provided where appropriate? Are they clear and well-written? Does the code take advantage of any special support for comments provided by the project language or platform (e.g., JavaDoc)?

The term portfolio is due on **December 13**. Late portfolios will not be accepted.

Attendance

I am not a stickler for attendance, but I do like having a full class. Remember that the university add/drop with 100% refund deadline is **August 31**. The deadline for withdrawal or credit/no-credit status is **November 2**.

University Policy on Academic Honesty

Loyola Marymount University expects high standards of honesty and integrity from all members of its community. Applied to the arena of academic performance, these standards preclude all acts of cheating on assignments or examinations, plagiarism, forgery of signatures or falsification of data, unauthorized access to University computer accounts or files, and removal, mutilation, or deliberate concealment of materials belonging to the University Library.

Customizable Course Schedule

Since this course is meant to be a “grand tour” of computer science, individual topics do not necessarily rely on a strict sequence. Thus, unlike most other courses, you will be asked to help determine the order by which subject matter shall be covered. Additional information on how we shall be making this choice will be provided later on.

Thus, the schedule below primarily covers deadlines, exams, and university dates (italicized), as these have been largely predetermined and are less likely to change.

<table>
<thead>
<tr>
<th>August/September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 31</td>
<td>October 4</td>
<td>November 2</td>
<td>December 13</td>
</tr>
<tr>
<td>University add/drop deadline for full refund</td>
<td>Midterm</td>
<td>University withdraw/credit/no-credit deadline</td>
<td>Final exam, 11am; term portfolios due</td>
</tr>
<tr>
<td>October 22–23</td>
<td>November 22–23</td>
<td>November 22–23</td>
<td></td>
</tr>
<tr>
<td>Undergraduate holidays; no class</td>
<td>Thanksgiving; no class</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can view the class calendar on the Web at http://ical.mac.com/dondi/LMU. If you have an iCalendar-savvy client (i.e., Mozilla Calendar, Ximian Evolution, KOrganizer, Apple iCal, etc.), you can subscribe to the class calendar at webcal://ical.mac.com/dondi/LMU.ics. On-the-fly updates and adjustments to the class schedule will be reflected in this calendar.