Exactly 14 intrinsically knotted graphs have 21 edges

Hwa Jeong Lee
(KAIST)

Hyoungjun Kim, Minjung Lee and Seoungsang Oh
(Korea University)

June 6, 2013
Spatial Graphs Conference
Table of contents

1 Definitions and Related Results
2 Motivations
3 Main Results
4 Terminology
5 Proof of Main Theorems
Table of contents

1. Definitions and Related Results
2. Motivations
3. Main Results
4. Terminology
5. Proof of Main Theorems
1. Definitions and Related Results
2. Motivations
3. Main Results
4. Terminology
5. Proof of Main Theorems
Table of contents

1. Definitions and Related Results
2. Motivations
3. Main Results
4. Terminology
5. Proof of Main Theorems
Table of contents

1. Definitions and Related Results
2. Motivations
3. Main Results
4. Terminology
5. Proof of Main Theorems
Definitions and Related Results I

We will consider a graph as an embedded graph in \mathbb{R}^3.

- A graph G is called \textit{intrinsically knotted (IK)} if every embedding of the graph contains a knotted cycle.

Conway-Gordon’85

K_7 is IK
Definitions and Related Results I

We will consider a graph as an embedded graph in \mathbb{R}^3.

- A graph G is called *intrinsically knotted* (IK) if every embedding of the graph contains a knotted cycle.

Conway-Gordon’85

K_7 is IK
We will consider a **graph** as an **embedded graph** in R^3.

- A graph G is called **intrinsically knotted (IK)** if every embedding of the graph contains a knotted cycle.

Conway-Gordon’85

K_7 is IK
We will consider a graph as an embedded graph in \mathbb{R}^3.

- A graph G is called *intrinsically knotted (IK)* if every embedding of the graph contains a knotted cycle.

Conway-Gordon’85

K_7 is IK
We will consider a graph as an embedded graph in R^3.

- A graph G is called *intrinsically knotted (IK)* if every embedding of the graph contains a knotted cycle.

Conway-Gordon’85

K_7 is IK
Definitions and Related Results II

- ∇Y move

Diagram:

- Points labeled a, b, and c form a triangle.
Definitions and Related Results II

- ∇Y move

\[a \rightarrow b \rightarrow c \rightarrow a \]
• ∇Y move
Definitions and Related Results II

- \(\nabla Y \) move

\[a \quad c \quad b \quad v \]

Motwani-Raghunathan-Saran’88

\(\nabla Y \) move preserves IKness.

We will only consider triangle-free graphs in this work.
● ∇Y move

Motwani-Raghunathan-Saran’88

∇Y move preserves IKness.

We will only consider triangle-free graphs in this work.
• ∇Y move

Motwani-Raghunathan-Saran’88

∇Y move preserves IKness.

We will only consider triangle-free graphs in this work.
A graph H is a *minor* of another graph G if it can be obtained from G by deleting edges and vertices and by contracting edges.

Provided that a graph G is IK and has no proper minor which is IK, G is said to be *minor minimal intrinsically knotted* (MMIK).

K_7 and the thirteen graphs obtained from it by ∇Y moves are MMIK.
A graph H is a *minor* of another graph G if it can be obtained from G by deleting edges and vertices and by contracting edges.

Provided that a graph G is IK and has no proper minor which is IK, G is said to be *minor minimal intrinsically knotted* (MMIK).
A graph H is a *minor* of another graph G if it can be obtained from G by deleting edges and vertices and by contracting edges.

Provided that a graph G is IK and has no proper minor which is IK, G is said to be *minor minimal intrinsically knotted* (MMIK).

Conway-Gordon’85, Kohara-Suzuki’90

K_7 and the thirteen graphs obtained from it by ∇Y moves are MMIK.
Definitions and Related Results III

• A graph H is a *minor* of another graph G if it can be obtained from G by deleting edges and vertices and by contracting edges.

• Provided that a graph G is IK and has no proper minor which is IK, G is said to be *minor minimal intrinsically knotted* (MMIK).

Conway-Gordon’85, Kohara-Suzuki’90

K_7 and the thirteen graphs obtained from it by ∇Y moves are MMIK.
• A graph H is a *minor* of another graph G if it can be obtained from G by deleting edges and vertices and by contracting edges.

• Provided that a graph G is IK and has no proper minor which is IK, G is said to be *minor minimal intrinsically knotted* (MMIK).

Conway-Gordon’85, Kohara-Suzuki’90

K_7 and the thirteen graphs obtained from it by ∇Y moves are MMIK.
A graph H is a minor of another graph G if it can be obtained from G by deleting edges and vertices and by contracting edges.

Provided that a graph G is IK and has no proper minor which is IK, G is said to be minor minimal intrinsically knotted (MMIK).

Conway-Gordon’85, Kohara-Suzuki’90

K_7 and the thirteen graphs obtained from it by ∇Y moves are MMIK.
• A graph H is a *minor* of another graph G if it can be obtained from G by deleting edges and vertices and by contracting edges.

• Provided that a graph G is IK and has no proper minor which is IK, G is said to be *minor minimal intrinsically knotted* (MMIK).

Conway-Gordon’85, Kohara-Suzuki’90

K_7 and the thirteen graphs obtained from it by \(\nabla Y\) moves are MMIK
A graph H is a minor of another graph G if it can be obtained from G by deleting edges and vertices and by contracting edges.

Provided that a graph G is IK and has no proper minor which is IK, G is said to be minor minimal intrinsically knotted (MMIK).

K_7 and the thirteen graphs obtained from it by ∇Y moves are MMIK.
A graph H is a **minor** of another graph G if it can be obtained from G by deleting edges and vertices and by contracting edges.

Provided that a graph G is IK and has no proper minor which is IK, G is said to be **minor minimal intrinsically knotted** (MMIK).

Conway-Gordon’85, Kohara-Suzuki’90

K_7 and the thirteen graphs obtained from it by ∇Y moves are MMIK
Motivations

Johnson-Kidwell-Michael’07

Any IK graphs consists at least 21 edges.

- It is sufficient to consider simple and connected graphs having no vertex of degree 1 or 2.

Hanaka-Nikkuni-Taniyama-Yamazaki, Goldberg-Mattman-Naimi

They constructed twenty graphs derived from H_{12} and C_{14} by $Y\bar{Y}$ moves and showed that these six graphs $N_9, N_{10}', N_{10}'', N_{11}, N_{11}', N_{12}$ and N_{11}' are not IK.
Motivations

Johnson-Kidwell-Michael’07

Any IK graphs consists at least 21 edges.

- It is sufficient to consider simple and connected graphs having no vertex of degree 1 or 2.

Hanaka-Nikkuni-Taniyama-Yamazaki, Goldberg-Mattman-Naimi

They constructed twenty graphs derived from H_{12} and C_{14} by YV moves and showed that these six graphs $N_9, N_{10}, N'_9, N_{11}, N'_1, N_{12}$ and N'_{11} are not IK.
Motivations

Johnson-Kidwell-Michael’07

Any IK graphs consists at least 21 edges.

- It is sufficient to consider simple and connected graphs having no vertex of degree 1 or 2.

Hanaka-Nikkuni-Taniyama-Yamazaki, Goldberg-Mattman-Naimi

They constructed twenty graphs derived from H_{12} and C_{14} by $Y\nabla$ moves and showed that these six graphs $N_9, N_{10}, N'_{10}, N_{11}, N'_{11}, N_{12}$ and N'_{11} are not IK.
Johnson-Kidwell-Michael’07

Any IK graphs consists at least 21 edges.

- It is sufficient to consider simple and connected graphs having no vertex of degree 1 or 2.

Hanaka-Nikkuni-Taniyama-Yamazaki, Goldberg-Mattman-Naimi

They constructed twenty graphs derived from H_{12} and C_{14} by $Y\nabla$ moves and showed that these six graphs $N_9, N_{10}, N'_{10}, N_{11}, N'_{11}, N_{12}$ and N'_{11} are not IK.
Main Results

Main Theorem I
The only triangle-free IK graphs with 21 edges are H_{12} and C_{14}.

Main Theorem II
Only K_7 and the thirteen graphs obtained from K_7 by ∇Y moves are IK graphs with 21 edges.
Terminology

Let $G = (V, E)$ be a triangle-free graph with 21 edges.

For any two distinct vertices a and b,

- $\text{deg}(a)$: the degree of a vertex a.
- $\text{dist}(a, b)$: the number of edges in the shortest path connecting them.

$\text{dist}(a, b) = 2$
Let $G = (V, E)$ be a triangle-free graph with 21 edges.

For any two distinct vertices a and b,

- $\text{deg}(a)$: the degree of a vertex a.
- $\text{dist}(a, b)$: the number of edges in the shortest path connecting them.

$\text{dist}(a, b) = 2$
Let $G = (V, E)$ be a triangle-free graph with 21 edges.

For any two distinct vertices a and b,

- $\deg(a)$: the degree of a vertex a.
 $\deg(a) = 5$

- $\dist(a, b)$: the number of edges in the shortest path connecting them.
 $\dist(a, b) = 2$
Let \(G = (V, E) \) be a triangle-free graph with 21 edges.

For any two distinct vertices \(a \) and \(b \),

- \(\deg(a) \): the degree of a vertex \(a \), \(\deg(a) = 5 \)
- \(\dist(a, b) \): the number of edges in the shortest path connecting them, \(\dist(a, b) = 2 \)
Terminology

Let $G = (V, E)$ be a triangle-free graph with 21 edges.

For any two distinct vertices a and b,

- $\text{deg}(a)$: the degree of a vertex a.
 \[\text{deg}(a) = 5 \]

- $\text{dist}(a, b)$: the number of edges in the shortest path connecting them.
 \[\text{dist}(a, b) = 2 \]
Let $G = (V, E)$ be a triangle-free graph with 21 edges.

For any two distinct vertices a and b,

- $\text{deg}(a)$: the degree of a vertex a.
 \[\text{deg}(a) = 5 \]

- $\text{dist}(a, b)$: the number of edges in the shortest path connecting them.
 \[\text{dist}(a, b) = 2 \]
A graph is **2-apex** if one can remove 2 vertices from it to obtain a planar graph.

If G is a 2-apex, then G is not IK.

$\hat{G}_{ab} = (\hat{V}_{ab}, \hat{E}_{ab})$: the graph obtained from G by deleting two vertices a and b, and then contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist.
Terminology

A graph is 2-apex if one can remove 2 vertices from it to obtain a planar graph.

Blain-Bowlin-Fleming-Hendricks-Lacombe’07, Ozawa-Tsutsumi’07

If G is a 2–apex, then G is not IK.

$\hat{G}_{ab} = (\hat{V}_{ab}, \hat{E}_{ab})$ - the graph obtained from G by deleting two vertices a and b, and then contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist.
Terminology

A graph is *2-apex* if one can remove 2 vertices from it to obtain a planar graph.

Blain-Bowlin-Fleming-Hendricks-Lacombe’07, Ozawa-Tsutumi’07

If G is a 2–apex, then G is not IK.

- $\tilde{G}_{a,b} = (\tilde{V}_{a,b}, \tilde{E}_{a,b})$: the graph obtained from G by deleting two vertices a and b, and then contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist.
A graph is **2-apex** if one can remove 2 vertices from it to obtain a planar graph.

Blain-Bowlin-Fleming-Hendricks-Lacombe’07, Ozawa-Tsutsumi’07

If G is a 2–apex, then G is not IK.

- $\widehat{G}_{a,b} = (\widehat{V}_{a,b}, \widehat{E}_{a,b})$: the graph obtained from G by deleting two vertices a and b, and then contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist.
Terminology

A graph is 2-apex if one can remove 2 vertices from it to obtain a planar graph.

Blain-Bowlin-Fleming-Hendricks-Lacombe’07, Ozawa-Tsutsumi’07

If G is a 2-apex, then G is not IK.

- $\widetilde{G}_{a,b} = (\widetilde{V}_{a,b}, \widetilde{E}_{a,b})$: the graph obtained from G by deleting two vertices a and b, and then contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist.
A graph is **2-apex** if one can remove 2 vertices from it to obtain a planar graph.

Blain-Bowlin-Fleming-Hendricks-Lacombe’07, Ozawa-Tsutsumi’07

If G is a 2–apex, then G is not IK.

- $\hat{G}_{a,b} = (\hat{V}_{a,b}, \hat{E}_{a,b})$: the graph obtained from G by deleting two vertices a and b, and then contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist.
A graph is 2-apex if one can remove 2 vertices from it to obtain a planar graph.

Blain-Bowlin-Fleming-Hendricks-Lacombe’07, Ozawa-Tsutsumi’07

If \(G \) is a 2–apex, then \(G \) is not IK.

\[\widehat{G}_{a,b} = (\widehat{V}_{a,b}, \widehat{E}_{a,b}) : \text{the graph obtained from } G \text{ by deleting two vertices } a \text{ and } b, \text{ and then contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist.} \]
A graph is 2-apex if one can remove 2 vertices from it to obtain a planar graph.

Blain-Bowlin-Fleming-Hendricks-Lacombe’07, Ozawa-Tsutsumi’07

If G is a 2-apex, then G is not IK.

\[\tilde{G}_{a,b} = (\tilde{V}_{a,b}, \tilde{E}_{a,b}) : \text{the graph obtained from } G \text{ by deleting two vertices } a \text{ and } b, \text{ and then contracting one edge incident to a vertex of degree 1 or 2 repeatedly until no vertices of degree 1 or 2 exist.} \]
To count the number of edges of $\hat{G}_{a,b}$, we have some notations.

- $E(a)$: the set of edges which are incident to a.
 \[|E(a)| = 6\]

- $V(a) = \{ c \in V \mid \text{dist}(a, c) = 1\}$
 \[V(a) = \{ c_1, c_2, c_3, c_4, c_5, c_6 \}\]

- $V_n(a) = \{ c \in V \mid c \in V(a), \deg(c) = n\}$
 \[V_3(a) = \{ c_5, c_6 \}\]

- $V_n(a, b) = V_n(a) \cap V_n(b)$
 \[V_3(a, b) = V_3(a) \cap V_3(b) = \{ c_5, c_6 \}\]
 \[V_4(a, b) = V_4(a) \cap V_4(b) = \{ c_4 \}\]

- $V_Y(a, b) = \{ c \in V \mid \exists d \in V_3(a, b) \text{ s.t. } V_3(d) = \{ a, b, c \}\}$
 \[V_Y(a, b) = \{ c \}\]
Terminology

To count the number of edges of $\hat{G}_{a,b}$, we have some notations.

- $E(a)$: the set of edges which are incident to a.
 $|E(a)| = 6$

- $V(a) = \{c \in V \mid \text{dist}(a, c) = 1\}$
 \[V(a) = \{c_1, c_2, c_3, c_4, c_5, c_6\}\]

- $V_n(a) = \{c \in V \mid c \in V(a), \deg(c) = n\}$
 \[V_3(a) = \{c_1, c_3, c_5, c_6\}\]
 \[V_4(a) = \{c_2, c_4\}\]

- $V_n(a, b) = V_n(a) \cap V_n(b)$
 \[V_3(a, b) = V_3(a) \cap V_3(b) = \{c_5, c_6\}\]
 \[V_4(a, b) = V_4(a) \cap V_4(b) = \{c_4\}\]

- $V_Y(a, b) = \{c \in V \mid \exists d \in V_3(a, b) \text{ s.t. } V_3(d) = \{a, b, c\}\}$
 \[V_Y(a, b) = \{c\}\]
Terminology

To count the number of edges of $\tilde{G}_{a,b}$, we have some notations.

- $E(a)$: the set of edges which are incident to a.
 $|E(a)| = 6$

- $V(a) = \{ c \in V \mid \text{dist}(a, c) = 1 \}$
 $V(a) = \{ c_1, c_2, c_3, c_4, c_5, c_6 \}$

- $V_n(a) = \{ c \in V \mid c \in V(a), \deg(c) = n \}$
 $V_3(a) = \{ c_1, c_3, c_5, c_6 \}$
 $V_4(a) = \{ c_2, c_4 \}$

- $V_n(a, b) = V_n(a) \cap V_n(b)$
 $V_3(a, b) = V_3(a) \cap V_3(b) = \{ c_5, c_6 \}$
 $V_4(a, b) = V_4(a) \cap V_4(b) = \{ c_4 \}$

- $V_Y(a, b) = \{ c \in V \mid \exists d \in V_3(a, b) \text{s.t.} V_3(d) = \{ a, b, c \} \}$
 $V_Y(a, b) = \{ c \}$
Terminology

To count the number of edges of $\widehat{G}_{a,b}$, we have some notations.

- $E(a)$: the set of edges which are incident to a.

 $|E(a)| = 6$

- $V(a) = \{ c \in V \mid \text{dist}(a, c) = 1 \}$

 $V(a) = \{ c_1, c_2, c_3, c_4, c_5, c_6 \}$

- $V_n(a) = \{ c \in V \mid c \in V(a), \text{deg}(c) = n \}$

 $V_3(a) = \{ c_1, c_3, c_5, c_6 \}$

 $V_4(a) = \{ c_2, c_4 \}$

- $V_n(a, b) = V_n(a) \cap V_n(b)$

 $V_3(a, b) = V_3(a) \cap V_3(b) = \{ c_5, c_6 \}$

 $V_4(a, b) = V_4(a) \cap V_4(b) = \{ c_4 \}$

- $V_Y(a, b) = \{ c \in V \mid \exists d \in V_3(a, b) \text{ s.t. } V_3(d) = \{ a, b, c \} \}$

 $V_Y(a, b) = \{ c \}$
To count the number of edges of $\tilde{G}_{a,b}$, we have some notations.

- $E(a)$: the set of edges which are incident to a.
 \[|E(a)| = 6\]

- $V(a) = \{c \in V \mid \text{dist}(a, c) = 1\}$
 $V(a) = \{c_1, c_2, c_3, c_4, c_5, c_6\}$

- $V_n(a) = \{c \in V \mid c \in V(a), \deg(c) = n\}$
 $V_3(a) = \{c_1, c_3, c_5, c_6\}$
 $V_4(a) = \{c_2, c_4\}$

- $V_n(a, b) = V_n(a) \cap V_n(b)$
 $V_3(a, b) = V_3(a) \cap V_3(b) = \{c_5, c_6\}$
 $V_4(a, b) = V_4(a) \cap V_4(b) = \{c_4\}$

- $V_Y(a, b) = \{c \in V \mid \exists d \in V_3(a, b) \text{ s.t. } V_3(d) = \{a, b, c\}\}$
 $V_Y(a, b) = \{c\}$
Terminology

To count the number of edges of $\widehat{G}_{a,b}$, we have some notations.

- $E(a)$: the set of edges which are incident to a.
 $|E(a)| = 6$
- $V(a) = \{ c \in V \mid \text{dist}(a, c) = 1 \}$
 $V(a) = \{ c_1, c_2, c_3, c_4, c_5, c_6 \}$
- $V_n(a) = \{ c \in V \mid c \in V(a), \ \text{deg}(c) = n \}$
 $V_3(a) = \{ c_1, c_3, c_5, c_6 \}$
 $V_4(a) = \{ c_2, c_4 \}$
- $V_n(a, b) = V_n(a) \cap V_n(b)$
 $V_3(a, b) = V_3(a) \cap V_3(b) = \{ c_5, c_6 \}$
 $V_4(a, b) = V_4(a) \cap V_4(b) = \{ c_4 \}$
- $V_Y(a, b) = \{ c \in V \mid \exists d \in V_3(a, b) \text{ s.t. } V_3(d) = \{ a, b, c \} \}$
 $V_Y(a, b) = \{ c \}$
\[|\widehat{E}_{a,b}| \]
\[|E_{a,b}| \leq 21 - |E(a) \cup E(b)| \]
\[|E_{a,b}| \leq 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)|) - |V_4(a, b)| \]
\[|\hat{E}_{a,b}| \leq 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)|) - |V_4(a, b)| \]
\[|E_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)|) + |V_4(a, b)| - |V_Y(a, b)| \]
\[|\hat{E}_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)|) + |V_4(a, b)| - |V_Y(a, b)| \]
A count equation in $\tilde{G}_{a,b}$

$$|\tilde{E}_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)| + |V_Y(a, b)|)$$

$$|\tilde{E}_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)|) + |V_4(a, b)| - |V_Y(a, b)|$$
A graph is \(n\)-apex if one can remove \(n \) vertices from it to obtain a planar graph.

\[\text{Blain-Bowlin-Fleming-Hendricks-Lacombe’07, Ozawa-Tsutsumi’07}\]

If \(G \) is a 2–apex, then \(G \) is not IK.

Lemma 1.
If \(|\hat{E}_{a,b}| \leq 8\), then \(\hat{G}_{a,b} \) is a planar graph. Thus \(G \) is not IK.

Lemma 2.
If \(|\hat{E}_{a,b}| = 9\), then \(\hat{G}_{a,b} \) is either a planar graph or homeomorphic to \(K(3, 3) \). Furthermore if \(\hat{G}_{a,b} \) is not homeomorphic to \(K(3, 3) \), then \(G \) is not IK.

Note: \(K(3, 3) \) is a triangle-free graph and every vertex has degree 3.
Useful Lemmas

A graph is n-apex if one can remove n vertices from it to obtain a planar graph.

Blain-Bowlin-Fleming-Hendricks-Lacombe’07, Ozawa-Tsutsumi’07

If G is a 2–apex, then G is not IK.

Lemma 1.

If $|\hat{E}_{a,b}| \leq 8$, then $\hat{G}_{a,b}$ is a planar graph. Thus G is not IK.

Lemma 2.

If $|\hat{E}_{a,b}| = 9$, then $\hat{G}_{a,b}$ is either a planar graph or homeomorphic to $K(3, 3)$. Furthermore if $\hat{G}_{a,b}$ is not homeomorphic to $K(3, 3)$, then G is not IK.

Note : $K(3, 3)$ is a triangle-free graph and every vertex has degree 3.
A graph is n-apex if one can remove n vertices from it to obtain a planar graph.

Blain-Bowlin-Fleming-Hendricks-Lacombe’07, Ozawa-Tsutsumi’07

If G is a 2–apex, then G is not IK.

Lemma 1.
If $|\widehat{E}_{a,b}| \leq 8$, then $\widehat{G}_{a,b}$ is a planar graph. Thus G is not IK.

Lemma 2.
If $|\widehat{E}_{a,b}| = 9$, then $\widehat{G}_{a,b}$ is either a planar graph or homeomorphic to $K(3, 3)$. Furthermore if $\widehat{G}_{a,b}$ is not homeomorphic to $K(3, 3)$, then G is not IK.

Note: $K(3, 3)$ is a triangle-free graph and every vertex has degree 3.
Our Process

To prove Theorem 1, we will show that any triangle-free graph with 21 edges is eventually either a 2-apex or homeomorphic to one of H_{12} and C_{14}.

1. Constructing all possible such triangle-free graph G with 21 edges,
2. Deleting two suitable vertices a and b of G,
3. Counting the number of edges of $\hat{G}_{a,b}$.

- If $\hat{G}_{a,b}$ has 9 edges or less, we could use Lemma 1. or Lemma 2. in order to show that G is not IK.
- In the event that $\hat{G}_{a,b}$ is not planar, we will show that G is homeomorphic to H_{12} or C_{14}.
Our Process

To prove Theorem 1, we will show that any triangle-free graph with 21 edges is eventually either a 2-apex or homeomorphic to one of H_{12} and C_{14}.

1. Constructing all possible such triangle-free graph G with 21 edges,

2. Deleting two suitable vertices a and b of G,

3. Counting the number of edges of $\hat{G}_{a,b}$.

- If $\hat{G}_{a,b}$ has 9 edges or less, we could use Lemma 1. or Lemma 2. in order to show that G is not IK.
- In the event that $\hat{G}_{a,b}$ is not planar, we will show that G is homeomorphic to H_{12} or C_{14}.
To prove Theorem 1, we will show that any triangle-free graph with 21 edges is eventually either a 2-apex or homeomorphic to one of H_{12} and C_{14}.

1. Constructing all possible such triangle-free graph G with 21 edges,

2. Deleting two suitable vertices a and b of G,

3. Counting the number of edges of $\hat{G}_{a,b}$.

- If $\hat{G}_{a,b}$ has 9 edges or less, we could use Lemma 1., or Lemma 2., in order to show that G is not IK.
- In the event that $\hat{G}_{a,b}$ is not planar, we will show that G is homeomorphic to H_{12} or C_{14}.
Our Process

To prove Theorem 1, we will show that any triangle-free graph with 21 edges is eventually either a 2-apex or homeomorphic to one of H_{12} and C_{14}.

1. Constructing all possible such triangle-free graph G with 21 edges,
2. Deleting two suitable vertices a and b of G,
3. Counting the number of edges of $\hat{G}_{a,b}$.

- If $\hat{G}_{a,b}$ has 9 edges or less, we could use Lemma 1. or Lemma 2. in order to show that G is not IK.
- In the event that $\hat{G}_{a,b}$ is not planar, we will show that G is homeomorphic to H_{12} or C_{14}.
Our Process

To prove Theorem 1, we will show that any triangle-free graph with 21 edges is eventually either a 2-apex or homeomorphic to one of H_{12} and C_{14}.

1. Constructing all possible such triangle-free graph G with 21 edges,
2. Deleting two suitable vertices a and b of G,
3. Counting the number of edges of $\widehat{G}_{a,b}$.

- If $\widehat{G}_{a,b}$ has 9 edges or less, we could use Lemma 1. or Lemma 2. in order to show that G is not IK.
- In the event that $\widehat{G}_{a,b}$ is not planar, we will show that G is homeomorphic to H_{12} or C_{14}.
Our Process

To prove Theorem 1, we will show that any triangle-free graph with 21 edges is eventually either a 2-apex or homeomorphic to one of H_{12} and C_{14}.

1. Constructing all possible such triangle-free graph G with 21 edges,
2. Deleting two suitable vertices a and b of G,
3. Counting the number of edges of $\widehat{G}_{a,b}$.

- If $\widehat{G}_{a,b}$ has 9 edges or less, we could use Lemma 1. or Lemma 2. in order to show that G is not IK.
- In the event that $\widehat{G}_{a,b}$ is not planar, we will show that G is homeomorphic to H_{12} or C_{14}.
Sketch of Proof of Theorem 1.

Throughout this proof, \(a \) denotes one of vertices with maximal degree in \(G \).

The proof is divided into three parts according to the degree of \(a \).

I. Any graph \(G \) with \(\text{deg}(a) \geq 5 \) cannot be IK.

II. Only IK graph with \(\text{deg}(a) = 4 \) is \(H_{12} \).

III. Any IK graph all of whose vertices have degree 3 is always \(C_4 \).
Sketch of Proof of Theorem 1.

Throughout this proof, \(a \) denotes one of vertices with maximal degree in \(G \).

The proof is divided into three parts according to the degree of \(a \).

I. Any graph \(G \) with \(\text{deg}(a) \geq 5 \) cannot be IK.

II. Only IK graph with \(\text{deg}(a) = 4 \) is \(H_{12} \).

III. Any IK graph all of whose vertices have degree 3 is always \(C_{14} \).
Sketch of Proof of Theorem 1.

Throughout this proof, \(a \) denotes one of vertices with maximal degree in \(G \).

The proof is divided into three parts according to the degree of \(a \).

I. Any graph \(G \) with \(\deg(a) \geq 5 \) cannot be IK.

II. Only IK graph with \(\deg(a) = 4 \) is \(H_{12} \).

III. Any IK graph all of whose vertices have degree \(3 \) is \(C_{14} \).
Sketch of Proof of Theorem 1.

Throughout this proof, \(a \) denotes one of vertices with maximal degree in \(G \).

The proof is divided into three parts according to the degree of \(a \).

I. Any graph \(G \) with \(\text{deg}(a) \geq 5 \) cannot be IK.

II. Only IK graph with \(\text{deg}(a) = 4 \) is \(H_{12} \).

III. Any IK graph all of whose vertices have degree 3 is \(C_{14} \).
Sketch of Proof of Theorem 1.

Throughout this proof, \(a \) denotes one of vertices with maximal degree in \(G \).

The proof is divided into three parts according to the degree of \(a \).

I. Any graph \(G \) with \(\text{deg}(a) \geq 5 \) cannot be IK.

II. Only IK graph with \(\text{deg}(a) = 4 \) is \(H_{12} \).

III. Any IK graph all of whose vertices have degree 3 is always \(C_{14} \).
We will show that for some $a, b \in V$ either $|\hat{E}_{a,b}| \leq 8$ or $|\hat{E}_{a,b}| = 9$ but $\hat{G}_{a,b}$ is not homeomorphic to $K(3, 3)$.

Lemma 1.

If $|\hat{E}_{a,b}| \leq 8$, then $\hat{G}_{a,b}$ is a planar graph. Thus G is not IK.

Lemma 2.

If $|\hat{E}_{a,b}| = 9$, then $\hat{G}_{a,b}$ is either a planar graph or homeomorphic to $K(3, 3)$. Furthermore if $\hat{G}_{a,b}$ is not homeomorphic to $K(3, 3)$, then G is not IK.

Then G is not IK.
We will show that for some \(a, b \in V \) either \(|\hat{E}_{a,b}| \leq 8 \) or \(|\hat{E}_{a,b}| = 9 \) but \(\hat{G}_{a,b} \) is not homeomorphic to \(K(3, 3) \).

Lemma 1.

If \(|\hat{E}_{a,b}| \leq 8 \), then \(\hat{G}_{a,b} \) is a planar graph. Thus \(G \) is not IK.

Lemma 2.

If \(|\hat{E}_{a,b}| = 9 \), then \(\hat{G}_{a,b} \) is either a planar graph or homeomorphic to \(K(3, 3) \). Furthermore if \(\hat{G}_{a,b} \) is not homeomorphic to \(K(3, 3) \), then \(G \) is not IK.

Then \(G \) is not IK.
We will show that for some \(a, b \in V \) either \(|\hat{E}_{a,b}| \leq 8\) or \(|\hat{E}_{a,b}| = 9\) but \(\hat{G}_{a,b}\) is not homeomorphic to \(K(3, 3)\).

** Lemma 1.**

If \(|\hat{E}_{a,b}| \leq 8\), then \(\hat{G}_{a,b}\) is a planar graph. Thus \(G\) is not IK.

** Lemma 2.**

If \(|\hat{E}_{a,b}| = 9\), then \(\hat{G}_{a,b}\) is either a planar graph or homeomorphic to \(K(3, 3)\). Furthermore if \(\hat{G}_{a,b}\) is not homeomorphic to \(K(3, 3)\), then \(G\) is not IK.

Then \(G\) is not IK.
I. \(\text{deg}(a) \geq 5 \)

I.1. \(\text{deg}(a) \geq 6 \) or \(\text{deg}(a) = 5 \) with \(|V_3(a)| \geq 4 \)

I.2. \(\text{deg}(a) = 5 \) and \(|V_3(a)| = 3 \)

I.3. \(\text{deg}(a) = 5 \) and \(|V_3(a)| = 0 \)

I.4. \(\text{deg}(a) = 5 \) and \(|V_3(a)| = 1 \)

I.5. \(\text{deg}(a) = 5 \) and \(|V_3(a)| = 2 \)
I. $\text{deg}(a) \geq 5$

I.1. $\text{deg}(a) \geq 6$ or $\text{deg}(a) = 5$ with $|V_3(a)| \geq 4$

I.2. $\text{deg}(a) = 5$ and $|V_3(a)| = 3$

I.3. $\text{deg}(a) = 5$ and $|V_3(a)| = 0$

I.4. $\text{deg}(a) = 5$ and $|V_3(a)| = 1$

I.5. $\text{deg}(a) = 5$ and $|V_3(a)| = 2$
\begin{itemize}
\item[I.1.] $\deg(a) \geq 6$ or $\deg(a) = 5$ with $|V_3(a)| \geq 4$
\item[I.2.] $\deg(a) = 5$ and $|V_3(a)| = 3$
\item[I.3.] $\deg(a) = 5$ and $|V_3(a)| = 0$
\item[I.4.] $\deg(a) = 5$ and $|V_3(a)| = 1$
\item[I.5.] $\deg(a) = 5$ and $|V_3(a)| = 2$
\end{itemize}
I. \(\text{deg}(a) \geq 5 \)

I.1. \(\text{deg}(a) \geq 6 \) or \(\text{deg}(a) = 5 \) with \(|V_3(a)| \geq 4 \)

I.2. \(\text{deg}(a) = 5 \) and \(|V_3(a)| = 3 \)

I.3. \(\text{deg}(a) = 5 \) and \(|V_3(a)| = 0 \)

I.4. \(\text{deg}(a) = 5 \) and \(|V_3(a)| = 1 \)

I.5. \(\text{deg}(a) = 5 \) and \(|V_3(a)| = 2 \)
I. $\deg(a) \geq 5$

I.1. $\deg(a) \geq 6$ or $\deg(a) = 5$ with $|V_3(a)| \geq 4$

I.2. $\deg(a) = 5$ and $|V_3(a)| = 3$

I.3. $\deg(a) = 5$ and $|V_3(a)| = 0$

I.4. $\deg(a) = 5$ and $|V_3(a)| = 1$

I.5. $\deg(a) = 5$ and $|V_3(a)| = 2$
I. \(\deg(a) \geq 5 \)

\[
|\widehat{E}_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)| + |V_Y(a, b)|)
\]

I.1. \(\deg(a) \geq 6 \) or \(\deg(a) = 5 \) with \(|V_3(a)| \geq 4 \)

If \(\deg(a) \geq 6 \), then \(|V_3(a) \leq 3| \). Let \(c \) be any vertex in \(V_3(a) \).

- \(|\widehat{E}_{a,b}| \leq 21 - 9 \)
- \(|\widehat{E}_{a,b}| \leq 21 - 9 - (3) \)
- \(|\widehat{E}_{a,b}| \leq 21 - 9 - (3 + 1) = 8 \)
- \(|\widehat{E}_{a,b}| \leq 21 - 10 \)
- \(|\widehat{E}_{a,b}| \leq 21 - 10 - (3) = 8 \)
I. \(\text{deg}(a) \geq 5 \)

\[
|\hat{E}_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)| + |V_Y(a, b)|)
\]

I.1. \(\text{deg}(a) \geq 6 \) or \(\text{deg}(a) = 5 \) with \(|V_3(a)| \geq 4 \)

If \(\text{deg}(a) \geq 6 \), then \(|V_3(a)| \leq 3 \). Let \(c \) be any vertex in \(V_3(a) \).

\[
|\hat{E}_{a,b}| \leq 21 - 9
\]
\[
|\hat{E}_{a,b}| \leq 21 - 9 - (3)
\]
\[
|\hat{E}_{a,b}| \leq 21 - 9 - (3+1) = 8
\]

\[
|\hat{E}_{a,b}| \leq 21 - 10
\]
\[
|\hat{E}_{a,b}| \leq 21 - 10 - (3) = 8
\]

\[
|\hat{E}_{a,b}| \leq 21 - 10 - (3) = 8
\]
I. $\deg(a) \geq 5$

$$|\widehat{E}_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)| + |V_Y(a, b)|)$$

I.1. $\deg(a) \geq 6$ or $\deg(a) = 5$ with $|V_3(a)| \geq 4$

If $\deg(a) \geq 6$, then $|V_3(a) \leq 3|$. Let c be any vertex in $V_3(a)$.

- $|\widehat{E}_{a,b}| \leq 21 - 9$
- $|E_{a,c}| \leq 21 - 9 - (3)$
- $|E_{a,d}| \leq 21 - 9 - (3 + 1) = 8$
- $|\widehat{E}_{a,b}| \leq 21 - 10$
- $|E_{a,c}| \leq 21 - 10 - (3) = 8$
- $|E_{a,d}| \leq 21 - 10 - (3) = 8$
I. $\deg(a) \geq 5$

$$|\overline{E}_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)| + |V_Y(a, b)|)$$

I.1. $\deg(a) \geq 6$ or $\deg(a) = 5$ with $|V_3(a)| \geq 4$

If $\deg(a) \geq 6$, then $|V_3(a) \leq 3|$. Let c be any vertex in $V_3(a)$.

![Diagram showing the change in graph structure](https://via.placeholder.com/150)

- $|\overline{E}_{a,b}| \leq 21 - 9$
- $|\overline{E}_{a,b}| \leq 21 - 9 - (3)$
- $|\overline{E}_{a,b}| \leq 21 - 9 - (3+1) = 8$

or

- $|\overline{E}_{a,b}| \leq 21 - 10$
- $|\overline{E}_{a,b}| \leq 21 - 10 - (3) = 8$
- $|\overline{E}_{a,b}| \leq 21 - 10 - (3) = 8$
I. $\text{deg}(a) \geq 5$

$$|\tilde{E}_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)| + |V_Y(a, b)|)$$

I.1. $\text{deg}(a) \geq 6$ or $\text{deg}(a) = 5$ with $|V_3(a)| \geq 4$

If $\text{deg}(a) \geq 6$, then $|V_3(a) \leq 3|$. Let c be any vertex in $V_3(a)$.

- $|\tilde{E}_{a,b}| \leq 21 - 9$
- $|\tilde{E}_{a,b}| \leq 21 - 9 - (3) = 8$
- $|\tilde{E}_{a,b}| \leq 21 - 9 - (3 + 1) = 8$

or

- $|\tilde{E}_{a,b}| \leq 21 - 10$
- $|\tilde{E}_{a,b}| \leq 21 - 10 - (3) = 8$
- $|\tilde{E}_{a,b}| \leq 21 - 10 - (3) = 8$
I. \(\text{deg}(a) \geq 5 \)

\[
|\hat{E}_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)| + |V_Y(a, b)|)
\]

I.1. \(\text{deg}(a) \geq 6 \) or \(\text{deg}(a) = 5 \) with \(|V_3(a)| \geq 4 \)

If \(\text{deg}(a) \geq 6 \), then \(|V_3(a)| \leq 3 \). Let \(c \) be any vertex in \(V_3(a) \).

\[|\hat{E}_{a,b}| \leq 21 - 9 \]
\[|\hat{E}_{a,b}| \leq 21 - 9 - (3) \]

or

\[|\hat{E}_{a,b}| \leq 21 - 10 \]
\[|\hat{E}_{a,b}| \leq 21 - 10 - (3) = 8 \]
I. \(\text{deg}(a) \geq 5 \)

\[|\hat{E}_{a,b}| = 21 - |E(a) \cup E(b)| - (|V_3(a)| + |V_3(b)| - |V_3(a, b)| + |V_4(a, b)| + |V_Y(a, b)|) \]

I.1. \(\text{deg}(a) \geq 6 \) or \(\text{deg}(a) = 5 \) with \(|V_3(a)| \geq 4 \)

If \(\text{deg}(a) \geq 6 \), then \(|V_3(a)| \leq 3 \). Let \(c \) be any vertex in \(V_3(a) \).

- \(|\hat{E}_{a,b}| \leq 21 - 9 \)
- \(|\hat{E}_{a,b}| \leq 21 - 9 - (3) \)
- \(|\hat{E}_{a,b}| \leq 21 - 9 - (3+1) = 8 \)

or

- \(|\hat{E}_{a,b}| \leq 21 - 10 \)
- \(|\hat{E}_{a,b}| \leq 21 - 10 - (3) = 8 \)
- \(|\hat{E}_{a,b}| \leq 21 - 10 - (3) = 8 \)
II. $\text{deg}(\alpha) = 4$

Let V_n denote the set of vertices of degree n.

Since $|V| = |V_4| + |V_3|$ and $4|V_4| + 3|V_3| = 2|E|$, the pair $(|V_4|, |V_3|)$ has three choices $(3, 10), (6, 6)$ and $(9, 2)$.

We show that G of type $(|V_4|, |V_3|) = (3, 10)$ or $(|V_4|, |V_3|) = (9, 2)$ is not IK and G possibly is H_{12} when $(|V_4|, |V_3|) = (6, 6)$.

II.1. $(|V_4|, |V_3|) = (3, 10)$

II.2. $(|V_4|, |V_3|) = (9, 2)$

II.3. $(|V_4|, |V_3|) = (6, 6)$
Let V_n denote the set of vertices of degree n.

Since $|V| = |V_4| + |V_3|$ and $4|V_4| + 3|V_3| = 2|E|$, the pair $(|V_4|, |V_3|)$ has three choices $(3, 10)$, $(6, 6)$ and $(9, 2)$.

We show that G of type $(|V_4|, |V_3|) = (3, 10)$ or $(|V_4|, |V_3|) = (9, 2)$ is not IK and G possibly is H_{12} when $(|V_4|, |V_3|) = (6, 6)$.

II.1. $(|V_4|, |V_3|) = (3, 10)$

II.2. $(|V_4|, |V_3|) = (9, 2)$

II.3. $(|V_4|, |V_3|) = (6, 6)$
II. \text{deg}(\alpha) = 4

Let V_n denote the set of vertices of degree n.

Since $|V| = |V_4| + |V_3|$ and $4|V_4| + 3|V_3| = 2|E|$, the pair $(|V_4|, |V_3|)$ has three choices $(3, 10)$, $(6, 6)$ and $(9, 2)$.

We show that G of type $(|V_4|, |V_3|) = (3, 10)$ or $(|V_4|, |V_3|) = (9, 2)$ is not IK and G possibly is H_{12} when $(|V_4|, |V_3|) = (6, 6)$.

\begin{enumerate}
 \item $\mathbf{II.1.}$ $(|V_4|, |V_3|) = (3, 10)$
 \item $\mathbf{II.2.}$ $(|V_4|, |V_3|) = (9, 2)$
 \item $\mathbf{II.3.}$ $(|V_4|, |V_3|) = (6, 6)$
\end{enumerate}
III. $\text{deg}(a) = 3$

Since $|E| = 21$ and every vertex has degree 3, there are exactly 14 vertices.

Lemma 3.
The distance between any pair of vertices cannot exceed 3.

* $V(a) = \{b_1, b_2, b_3\}$

* $V(b_i) = \{a, c_{2n-i}, c_{2i}\}$

* $V \setminus (V(a) \cup V(b_i)) = \{d_1, d_2, d_3, d_4\}$
III. $\deg(a) = 3$

Since $|E| = 21$ and every vertex has degree 3, there are exactly 14 vertices.

Lemma 3.
The distance between any pair of vertices cannot exceed 3.

- $V(a) = \{b_1, b_2, b_3\}$
- $V(b_i) = \{a, c_{2n-i}, c_{2i}\}$
- $\forall V(a) \cup V(b_i) = \{d_1, d_2, d_3, d_4\}$
III. $\text{deg}(a) = 3$

Since $|E| = 21$ and every vertex has degree 3, there are exactly 14 vertices.

Lemma 3.

The distance between any pair of vertices cannot exceed 3.

- $V(a) = \{b_1, b_2, b_3\}$
- $V(b_i) = \{a, c_{2n-i}, c_{2i}\}$
- $V \setminus (V(a) \cup V(b_i)) = \{d_1, d_2, d_3, d_4\}$
III. \(\text{deg}(a) = 3 \)

Since \(|E| = 21 \) and every vertex has degree 3, there are exactly 14 vertices.

Lemma 3.

The distance between any pair of vertices cannot exceed 3.

- \(V(a) = \{b_1, b_2, b_3\} \)
- \(V(b_i) = \{a, c_{2n-i}, c_{2i}\} \)
- \(V \setminus (V(a) \cup V(b_i)) = \{d_1, d_2, d_3, d_4\} \)
III. \text{deg}(a) = 3

Since $|E| = 21$ and every vertex has degree 3, there are exactly 14 vertices.

Lemma 3.

The distance between any pair of vertices cannot exceed 3.

- $V(a) = \{b_1, b_2, b_3\}$
- $V(b_i) = \{a, c_{2n-i}, c_{2i}\}$
- $V\setminus(V(a) \cup V(b_i)) = \{d_1, d_2, d_3, d_4\}$
III. $\deg(a) = 3$

Since $|E| = 21$ and every vertex has degree 3, there are exactly 14 vertices.

Lemma 3.
The distance between any pair of vertices cannot exceed 3.

- $V(a) = \{b_1, b_2, b_3\}$
- $V(b_i) = \{a, c_{2n-i}, c_{2i}\}$
- $V \setminus (V(a) \cup V(b_i)) = \{d_1, d_2, d_3, d_4\}$
III. $\deg(a) = 3$

Since $|E| = 21$ and every vertex has degree 3, there is exactly 14 vertices.

Lemma 3.
The distance between any pair of vertices cannot exceed 3.

This graph is exactly C_{14}.
Thank you for listening!